File size: 10,607 Bytes
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Distill RTM Detectors Based on MMRazor

## Description

To further improve the model accuracy while not introducing much additional
computation cost, we apply the feature-based distillation to the training phase
of these RTM detectors. In summary, our distillation strategy are threefold:

(1) Inspired by [PKD](https://arxiv.org/abs/2207.02039), we first normalize
the intermediate feature maps to have zero mean and unit variances before calculating
the distillation loss.

(2) Inspired by [CWD](https://arxiv.org/abs/2011.13256), we adopt the channel-wise
distillation paradigm, which can pay more attention to the most salient regions
of each channel.

(3) Inspired by [DAMO-YOLO](https://arxiv.org/abs/2211.15444), the distillation
process is split into two stages. 1) The teacher distills the student at the
first stage (280 epochs) on strong mosaic domain. 2) The student finetunes itself
on no masaic domain at the second stage (20 epochs).

## Results and Models

| Location | Dataset |                                                      Teacher                                                      |                                                         Student                                                         |     mAP     | mAP(T) | mAP(S) |                    Config                    | Download                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| :------: | :-----: | :---------------------------------------------------------------------------------------------------------------: | :---------------------------------------------------------------------------------------------------------------------: | :---------: | :----: | :----: | :------------------------------------------: | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
|   FPN    |  COCO   | [RTMDet-s](https://github.com/open-mmlab/mmyolo/blob/main/configs/rtmdet/rtmdet_s_syncbn_fast_8xb32-300e_coco.py) | [RTMDet-tiny](https://github.com/open-mmlab/mmyolo/blob/main/configs/rtmdet/rtmdet_tiny_syncbn_fast_8xb32-300e_coco.py) | 41.8 (+0.8) |  44.6  |  41.0  | [config](kd_tiny_rtmdet_s_neck_300e_coco.py) | [teacher](https://download.openmmlab.com/mmyolo/v0/rtmdet/rtmdet_s_syncbn_fast_8xb32-300e_coco/rtmdet_s_syncbn_fast_8xb32-300e_coco_20221230_182329-0a8c901a.pth) \|[model](https://download.openmmlab.com/mmrazor/v1/rtmdet_distillation/kd_tiny_rtmdet_s_neck_300e_coco/kd_tiny_rtmdet_s_neck_300e_coco_20230213_104240-e1e4197c.pth) \| [log](https://download.openmmlab.com/mmrazor/v1/rtmdet_distillation/kd_tiny_rtmdet_s_neck_300e_coco/kd_tiny_rtmdet_s_neck_300e_coco_20230213_104240-176901d8.json) |
|   FPN    |  COCO   | [RTMDet-m](https://github.com/open-mmlab/mmyolo/blob/main/configs/rtmdet/rtmdet_m_syncbn_fast_8xb32-300e_coco.py) |    [RTMDet-s](https://github.com/open-mmlab/mmyolo/blob/main/configs/rtmdet/rtmdet_s_syncbn_fast_8xb32-300e_coco.py)    | 45.7 (+1.1) |  49.3  |  44.6  |  [config](kd_s_rtmdet_m_neck_300e_coco.py)   | [teacher](https://download.openmmlab.com/mmyolo/v0/rtmdet/rtmdet_m_syncbn_fast_8xb32-300e_coco/rtmdet_m_syncbn_fast_8xb32-300e_coco_20230102_135952-40af4fe8.pth)         \|[model](https://download.openmmlab.com/mmrazor/v1/rtmdet_distillation/kd_s_rtmdet_m_neck_300e_coco/kd_s_rtmdet_m_neck_300e_coco_20230220_140647-446ff003.pth) \| [log](https://download.openmmlab.com/mmrazor/v1/rtmdet_distillation/kd_s_rtmdet_m_neck_300e_coco/kd_s_rtmdet_m_neck_300e_coco_20230220_140647-89862269.json)     |
|   FPN    |  COCO   | [RTMDet-l](https://github.com/open-mmlab/mmyolo/blob/main/configs/rtmdet/rtmdet_l_syncbn_fast_8xb32-300e_coco.py) |    [RTMDet-m](https://github.com/open-mmlab/mmyolo/blob/main/configs/rtmdet/rtmdet_m_syncbn_fast_8xb32-300e_coco.py)    | 50.2 (+0.9) |  51.4  |  49.3  |  [config](kd_m_rtmdet_l_neck_300e_coco.py)   | [teacher](https://download.openmmlab.com/mmyolo/v0/rtmdet/rtmdet_l_syncbn_fast_8xb32-300e_coco/rtmdet_l_syncbn_fast_8xb32-300e_coco_20230102_135928-ee3abdc4.pth) \|[model](https://download.openmmlab.com/mmrazor/v1/rtmdet_distillation/kd_m_rtmdet_l_neck_300e_coco/kd_m_rtmdet_l_neck_300e_coco_20230220_141313-b806f503.pth) \| [log](https://download.openmmlab.com/mmrazor/v1/rtmdet_distillation/kd_m_rtmdet_l_neck_300e_coco/kd_m_rtmdet_l_neck_300e_coco_20230220_141313-bd028fd3.json)             |
|   FPN    |  COCO   | [RTMDet-x](https://github.com/open-mmlab/mmyolo/blob/main/configs/rtmdet/rtmdet_x_syncbn_fast_8xb32-300e_coco.py) |    [RTMDet-l](https://github.com/open-mmlab/mmyolo/blob/main/configs/rtmdet/rtmdet_l_syncbn_fast_8xb32-300e_coco.py)    | 52.3 (+0.9) |  52.8  |  51.4  |  [config](kd_l_rtmdet_x_neck_300e_coco.py)   | [teacher](https://download.openmmlab.com/mmyolo/v0/rtmdet/rtmdet_x_syncbn_fast_8xb32-300e_coco/rtmdet_x_syncbn_fast_8xb32-300e_coco_20221231_100345-b85cd476.pth) \|[model](https://download.openmmlab.com/mmrazor/v1/rtmdet_distillation/kd_l_rtmdet_x_neck_300e_coco/kd_l_rtmdet_x_neck_300e_coco_20230220_141912-c9979722.pth) \| [log](https://download.openmmlab.com/mmrazor/v1/rtmdet_distillation/kd_l_rtmdet_x_neck_300e_coco/kd_l_rtmdet_x_neck_300e_coco_20230220_141912-c5c4e17b.json)             |

## Usage

### Prerequisites

- [MMRazor dev-1.x](https://github.com/open-mmlab/mmrazor/tree/dev-1.x)

Install MMRazor from source

```
git clone -b dev-1.x https://github.com/open-mmlab/mmrazor.git
cd mmrazor
# Install MMRazor
mim install -v -e .
```

### Training commands

In MMYOLO's root directory, run the following command to train the RTMDet-tiny
with 8 GPUs, using RTMDet-s as the teacher:

```bash
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 PORT=29500 ./tools/dist_train.sh configs/rtmdet/distillation/kd_tiny_rtmdet_s_neck_300e_coco.py
```

### Testing commands

In MMYOLO's root directory, run the following command to test the model:

```bash
CUDA_VISIBLE_DEVICES=0 PORT=29500 ./tools/dist_test.sh configs/rtmdet/distillation/kd_tiny_rtmdet_s_neck_300e_coco.py ${CHECKPOINT_PATH}
```

### Getting student-only checkpoint

After training, the checkpoint contains parameters for both student and teacher models.
Run the following command to convert it to student-only checkpoint:

```bash
python ./tools/model_converters/convert_kd_ckpt_to_student.py ${CHECKPOINT_PATH} --out-path ${OUTPUT_CHECKPOINT_PATH}
```

## Configs

Here we provide detection configs and models for MMRazor in MMYOLO. For clarify,
we take `./kd_tiny_rtmdet_s_neck_300e_coco.py` as an example to show how to
distill a RTM detector based on MMRazor.

Here is the main part of `./kd_tiny_rtmdet_s_neck_300e_coco.py`.

```shell
norm_cfg = dict(type='BN', affine=False, track_running_stats=False)

distiller=dict(
    type='ConfigurableDistiller',
    student_recorders=dict(
        fpn0=dict(type='ModuleOutputs', source='neck.out_layers.0.conv'),
        fpn1=dict(type='ModuleOutputs', source='neck.out_layers.1.conv'),
        fpn2=dict(type='ModuleOutputs', source='neck.out_layers.2.conv'),
    ),
    teacher_recorders=dict(
        fpn0=dict(type='ModuleOutputs', source='neck.out_layers.0.conv'),
        fpn1=dict(type='ModuleOutputs', source='neck.out_layers.1.conv'),
        fpn2=dict(type='ModuleOutputs', source='neck.out_layers.2.conv')),
    connectors=dict(
        fpn0_s=dict(type='ConvModuleConnector', in_channel=96,
            out_channel=128, bias=False, norm_cfg=norm_cfg,
            act_cfg=None),
        fpn0_t=dict(
            type='NormConnector', in_channels=128, norm_cfg=norm_cfg),
        fpn1_s=dict(
            type='ConvModuleConnector', in_channel=96,
            out_channel=128, bias=False, norm_cfg=norm_cfg,
            act_cfg=None),
        fpn1_t=dict(
            type='NormConnector', in_channels=128, norm_cfg=norm_cfg),
        fpn2_s=dict(
            type='ConvModuleConnector', in_channel=96,
            out_channel=128, bias=False, norm_cfg=norm_cfg,
            act_cfg=None),
        fpn2_t=dict(
            type='NormConnector', in_channels=128, norm_cfg=norm_cfg)),
    distill_losses=dict(
        loss_fpn0=dict(type='ChannelWiseDivergence', loss_weight=1),
        loss_fpn1=dict(type='ChannelWiseDivergence', loss_weight=1),
        loss_fpn2=dict(type='ChannelWiseDivergence', loss_weight=1)),
    loss_forward_mappings=dict(
        loss_fpn0=dict(
            preds_S=dict(from_student=True, recorder='fpn0', connector='fpn0_s'),
            preds_T=dict(from_student=False, recorder='fpn0', connector='fpn0_t')),
        loss_fpn1=dict(
            preds_S=dict(from_student=True, recorder='fpn1', connector='fpn1_s'),
            preds_T=dict(from_student=False, recorder='fpn1', connector='fpn1_t')),
        loss_fpn2=dict(
            preds_S=dict(from_student=True, recorder='fpn2', connector='fpn2_s'),
            preds_T=dict(from_student=False, recorder='fpn2', connector='fpn2_t'))))

```

`recorders` are used to record various intermediate results during the model forward.
In this example, they can help record the output of 3 `nn.Module` of the teacher
and the student. Details are list in [Recorder](https://github.com/open-mmlab/mmrazor/blob/dev-1.x/docs/en/advanced_guides/recorder.md) and [MMRazor Distillation](https://zhuanlan.zhihu.com/p/596582609) (if users can read Chinese).

`connectors` are adaptive layers which usually map teacher's and students features
to the same dimension.

`distill_losses` are configs for multiple distill losses.

`loss_forward_mappings` are mappings between distill loss forward arguments and records.

In addition, the student finetunes itself on no masaic domain at the last 20 epochs,
so we add a new hook named `StopDistillHook` to stop distillation on time.
We need to add this hook to the `custom_hooks` list like this:

```shell
custom_hooks = [..., dict(type='mmrazor.StopDistillHook', detach_epoch=280)]
```