File size: 6,508 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
from typing import Sequence
import mmcv
from mmdet.apis import inference_detector, init_detector
from mmengine import Config, DictAction
from mmengine.registry import init_default_scope
from mmengine.utils import ProgressBar
from mmyolo.registry import VISUALIZERS
from mmyolo.utils.misc import auto_arrange_images, get_file_list
def parse_args():
parser = argparse.ArgumentParser(description='Visualize feature map')
parser.add_argument(
'img', help='Image path, include image file, dir and URL.')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--out-dir', default='./output', help='Path to output file')
parser.add_argument(
'--target-layers',
default=['backbone'],
nargs='+',
type=str,
help='The target layers to get feature map, if not set, the tool will '
'specify the backbone')
parser.add_argument(
'--preview-model',
default=False,
action='store_true',
help='To preview all the model layers')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--score-thr', type=float, default=0.3, help='Bbox score threshold')
parser.add_argument(
'--show', action='store_true', help='Show the featmap results')
parser.add_argument(
'--channel-reduction',
default='select_max',
help='Reduce multiple channels to a single channel')
parser.add_argument(
'--topk',
type=int,
default=4,
help='Select topk channel to show by the sum of each channel')
parser.add_argument(
'--arrangement',
nargs='+',
type=int,
default=[2, 2],
help='The arrangement of featmap when channel_reduction is '
'not None and topk > 0')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
class ActivationsWrapper:
def __init__(self, model, target_layers):
self.model = model
self.activations = []
self.handles = []
self.image = None
for target_layer in target_layers:
self.handles.append(
target_layer.register_forward_hook(self.save_activation))
def save_activation(self, module, input, output):
self.activations.append(output)
def __call__(self, img_path):
self.activations = []
results = inference_detector(self.model, img_path)
return results, self.activations
def release(self):
for handle in self.handles:
handle.remove()
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
init_default_scope(cfg.get('default_scope', 'mmyolo'))
channel_reduction = args.channel_reduction
if channel_reduction == 'None':
channel_reduction = None
assert len(args.arrangement) == 2
model = init_detector(args.config, args.checkpoint, device=args.device)
if not os.path.exists(args.out_dir) and not args.show:
os.mkdir(args.out_dir)
if args.preview_model:
print(model)
print('\n This flag is only show model, if you want to continue, '
'please remove `--preview-model` to get the feature map.')
return
target_layers = []
for target_layer in args.target_layers:
try:
target_layers.append(eval(f'model.{target_layer}'))
except Exception as e:
print(model)
raise RuntimeError('layer does not exist', e)
activations_wrapper = ActivationsWrapper(model, target_layers)
# init visualizer
visualizer = VISUALIZERS.build(model.cfg.visualizer)
visualizer.dataset_meta = model.dataset_meta
# get file list
image_list, source_type = get_file_list(args.img)
progress_bar = ProgressBar(len(image_list))
for image_path in image_list:
result, featmaps = activations_wrapper(image_path)
if not isinstance(featmaps, Sequence):
featmaps = [featmaps]
flatten_featmaps = []
for featmap in featmaps:
if isinstance(featmap, Sequence):
flatten_featmaps.extend(featmap)
else:
flatten_featmaps.append(featmap)
img = mmcv.imread(image_path)
img = mmcv.imconvert(img, 'bgr', 'rgb')
if source_type['is_dir']:
filename = os.path.relpath(image_path, args.img).replace('/', '_')
else:
filename = os.path.basename(image_path)
out_file = None if args.show else os.path.join(args.out_dir, filename)
# show the results
shown_imgs = []
visualizer.add_datasample(
'result',
img,
data_sample=result,
draw_gt=False,
show=False,
wait_time=0,
out_file=None,
pred_score_thr=args.score_thr)
drawn_img = visualizer.get_image()
for featmap in flatten_featmaps:
shown_img = visualizer.draw_featmap(
featmap[0],
drawn_img,
channel_reduction=channel_reduction,
topk=args.topk,
arrangement=args.arrangement)
shown_imgs.append(shown_img)
shown_imgs = auto_arrange_images(shown_imgs)
progress_bar.update()
if out_file:
mmcv.imwrite(shown_imgs[..., ::-1], out_file)
if args.show:
visualizer.show(shown_imgs)
if not args.show:
print(f'All done!'
f'\nResults have been saved at {os.path.abspath(args.out_dir)}')
# Please refer to the usage tutorial:
# https://github.com/open-mmlab/mmyolo/blob/main/docs/zh_cn/user_guides/visualization.md # noqa
if __name__ == '__main__':
main()
|