File size: 10,724 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
# Copyright (c) OpenMMLab. All rights reserved.
"""This script helps to convert labelme-style dataset to the coco format.
Usage:
$ python labelme2coco.py \
--img-dir /path/to/images \
--labels-dir /path/to/labels \
--out /path/to/coco_instances.json \
[--class-id-txt /path/to/class_with_id.txt]
Note:
Labels dir file structure:
.
βββ PATH_TO_LABELS
βββ image1.json
βββ image2.json
βββ ...
Images dir file structure:
.
βββ PATH_TO_IMAGES
βββ image1.jpg
βββ image2.png
βββ ...
If user set `--class-id-txt` then will use it in `categories` field,
if not set, then will generate auto base on the all labelme label
files to `class_with_id.json`.
class_with_id.txt example, each line is "id class_name":
```text
1 cat
2 dog
3 bicycle
4 motorcycle
```
"""
import argparse
import json
from pathlib import Path
from typing import Optional
import numpy as np
from mmengine import track_iter_progress
from mmyolo.utils.misc import IMG_EXTENSIONS
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--img-dir', type=str, help='Dataset image directory')
parser.add_argument(
'--labels-dir', type=str, help='Dataset labels directory')
parser.add_argument('--out', type=str, help='COCO label json output path')
parser.add_argument(
'--class-id-txt', default=None, type=str, help='All class id txt path')
args = parser.parse_args()
return args
def format_coco_annotations(points: list, image_id: int, annotations_id: int,
category_id: int) -> dict:
"""Gen COCO annotations format label from labelme format label.
Args:
points (list): Coordinates of four vertices of rectangle bbox.
image_id (int): Image id.
annotations_id (int): Annotations id.
category_id (int): Image dir path.
Return:
annotation_info (dict): COCO annotation data.
"""
annotation_info = dict()
annotation_info['iscrowd'] = 0
annotation_info['category_id'] = category_id
annotation_info['id'] = annotations_id
annotation_info['image_id'] = image_id
# bbox is [x1, y1, w, h]
annotation_info['bbox'] = [
points[0][0], points[0][1], points[1][0] - points[0][0],
points[1][1] - points[0][1]
]
annotation_info['area'] = annotation_info['bbox'][2] * annotation_info[
'bbox'][3] # bbox w * h
segmentation_points = np.asarray(points).copy()
segmentation_points[1, :] = np.asarray(points)[2, :]
segmentation_points[2, :] = np.asarray(points)[1, :]
annotation_info['segmentation'] = [list(segmentation_points.flatten())]
return annotation_info
def parse_labelme_to_coco(
image_dir: str,
labels_root: str,
all_classes_id: Optional[dict] = None) -> (dict, dict):
"""Gen COCO json format label from labelme format label.
Args:
image_dir (str): Image dir path.
labels_root (str): Image label root path.
all_classes_id (Optional[dict]): All class with id. Default None.
Return:
coco_json (dict): COCO json data.
category_to_id (dict): category id and name.
COCO json example:
{
"images": [
{
"height": 3000,
"width": 4000,
"id": 1,
"file_name": "IMG_20210627_225110.jpg"
},
...
],
"categories": [
{
"id": 1,
"name": "cat"
},
...
],
"annotations": [
{
"iscrowd": 0,
"category_id": 1,
"id": 1,
"image_id": 1,
"bbox": [
1183.7313232421875,
1230.0509033203125,
1270.9998779296875,
927.0848388671875
],
"area": 1178324.7170306593,
"segmentation": [
[
1183.7313232421875,
1230.0509033203125,
1183.7313232421875,
2157.1357421875,
2454.731201171875,
2157.1357421875,
2454.731201171875,
1230.0509033203125
]
]
},
...
]
}
"""
# init coco json field
coco_json = {'images': [], 'categories': [], 'annotations': []}
image_id = 0
annotations_id = 0
if all_classes_id is None:
category_to_id = dict()
categories_labels = []
else:
category_to_id = all_classes_id
categories_labels = list(all_classes_id.keys())
# add class_ids and class_names to the categories list in coco_json
for class_name, class_id in category_to_id.items():
coco_json['categories'].append({
'id': class_id,
'name': class_name
})
# filter incorrect image file
img_file_list = [
img_file for img_file in Path(image_dir).iterdir()
if img_file.suffix.lower() in IMG_EXTENSIONS
]
for img_file in track_iter_progress(img_file_list):
# get label file according to the image file name
label_path = Path(labels_root).joinpath(
img_file.stem).with_suffix('.json')
if not label_path.exists():
print(f'Can not find label file: {label_path}, skip...')
continue
# load labelme label
with open(label_path, encoding='utf-8') as f:
labelme_data = json.load(f)
image_id = image_id + 1 # coco id begin from 1
# update coco 'images' field
coco_json['images'].append({
'height':
labelme_data['imageHeight'],
'width':
labelme_data['imageWidth'],
'id':
image_id,
'file_name':
Path(labelme_data['imagePath']).name
})
for label_shapes in labelme_data['shapes']:
# Update coco 'categories' field
class_name = label_shapes['label']
if (all_classes_id is None) and (class_name
not in categories_labels):
# only update when not been added before
coco_json['categories'].append({
'id':
len(categories_labels) + 1, # categories id start with 1
'name': class_name
})
categories_labels.append(class_name)
category_to_id[class_name] = len(categories_labels)
elif (all_classes_id is not None) and (class_name
not in categories_labels):
# check class name
raise ValueError(f'Got unexpected class name {class_name}, '
'which is not in your `--class-id-txt`.')
# get shape type and convert it to coco format
shape_type = label_shapes['shape_type']
if shape_type != 'rectangle':
print(f'not support `{shape_type}` yet, skip...')
continue
annotations_id = annotations_id + 1
# convert point from [xmin, ymin, xmax, ymax] to [x1, y1, w, h]
(x1, y1), (x2, y2) = label_shapes['points']
x1, x2 = sorted([x1, x2]) # xmin, xmax
y1, y2 = sorted([y1, y2]) # ymin, ymax
points = [[x1, y1], [x2, y2], [x1, y2], [x2, y1]]
coco_annotations = format_coco_annotations(
points, image_id, annotations_id, category_to_id[class_name])
coco_json['annotations'].append(coco_annotations)
print(f'Total image = {image_id}')
print(f'Total annotations = {annotations_id}')
print(f'Number of categories = {len(categories_labels)}, '
f'which is {categories_labels}')
return coco_json, category_to_id
def convert_labelme_to_coco(image_dir: str,
labels_dir: str,
out_path: str,
class_id_txt: Optional[str] = None):
"""Convert labelme format label to COCO json format label.
Args:
image_dir (str): Image dir path.
labels_dir (str): Image label path.
out_path (str): COCO json file save path.
class_id_txt (Optional[str]): All class id txt file path.
Default None.
"""
assert Path(out_path).suffix == '.json'
if class_id_txt is not None:
assert Path(class_id_txt).suffix == '.txt'
all_classes_id = dict()
with open(class_id_txt, encoding='utf-8') as f:
txt_lines = f.read().splitlines()
assert len(txt_lines) > 0
for txt_line in txt_lines:
class_info = txt_line.split(' ')
if len(class_info) != 2:
raise ValueError('Error parse "class_id_txt" file '
f'{class_id_txt}, please check if some of '
'the class names is blank, like "1 " -> '
'"1 blank", or class name has space between'
' words, like "1 Big house" -> "1 '
'Big-house".')
v, k = class_info
all_classes_id.update({k: int(v)})
else:
all_classes_id = None
# convert to coco json
coco_json_data, category_to_id = parse_labelme_to_coco(
image_dir, labels_dir, all_classes_id)
# save json result
Path(out_path).parent.mkdir(exist_ok=True, parents=True)
print(f'Saving json to {out_path}')
json.dump(coco_json_data, open(out_path, 'w'), indent=2)
if class_id_txt is None:
category_to_id_path = Path(out_path).with_name('class_with_id.txt')
print(f'Saving class id txt to {category_to_id_path}')
with open(category_to_id_path, 'w', encoding='utf-8') as f:
for k, v in category_to_id.items():
f.write(f'{v} {k}\n')
else:
print('Not Saving new class id txt, user should using '
f'{class_id_txt} for training config')
def main():
args = parse_args()
convert_labelme_to_coco(args.img_dir, args.labels_dir, args.out,
args.class_id_txt)
print('All done!')
if __name__ == '__main__':
main()
|