File size: 9,292 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
"""This script helps to convert yolo-style dataset to the coco format.
Usage:
$ python yolo2coco.py /path/to/dataset # image_dir
Note:
1. Before running this script, please make sure the root directory
of your dataset is formatted in the following struction:
.
βββ $ROOT_PATH
βββ classes.txt
βββ labels
β βββ a.txt
β βββ b.txt
β βββ ...
βββ images
β βββ a.jpg
β βββ b.png
β βββ ...
βββ ...
2. The script will automatically check whether the corresponding
`train.txt`, ` val.txt`, and `test.txt` exist under your `image_dir`
or not. If these files are detected, the script will organize the
dataset. The image paths in these files must be ABSOLUTE paths.
3. Once the script finishes, the result files will be saved in the
directory named 'annotations' in the root directory of your dataset.
The default output file is result.json. The root directory folder may
look like this in the root directory after the converting:
.
βββ $ROOT_PATH
βββ annotations
β βββ result.json
β βββ ...
βββ classes.txt
βββ labels
β βββ a.txt
β βββ b.txt
β βββ ...
βββ images
β βββ a.jpg
β βββ b.png
β βββ ...
βββ ...
4. After converting to coco, you can use the
`tools/analysis_tools/browse_coco_json.py` script to visualize
whether it is correct.
"""
import argparse
import os
import os.path as osp
import mmcv
import mmengine
IMG_EXTENSIONS = ('.jpg', '.png', '.jpeg')
def check_existence(file_path: str):
"""Check if target file is existed."""
if not osp.exists(file_path):
raise FileNotFoundError(f'{file_path} does not exist!')
def get_image_info(yolo_image_dir, idx, file_name):
"""Retrieve image information."""
img_path = osp.join(yolo_image_dir, file_name)
check_existence(img_path)
img = mmcv.imread(img_path)
height, width = img.shape[:2]
img_info_dict = {
'file_name': file_name,
'id': idx,
'width': width,
'height': height
}
return img_info_dict, height, width
def convert_bbox_info(label, idx, obj_count, image_height, image_width):
"""Convert yolo-style bbox info to the coco format."""
label = label.strip().split()
x = float(label[1])
y = float(label[2])
w = float(label[3])
h = float(label[4])
# convert x,y,w,h to x1,y1,x2,y2
x1 = (x - w / 2) * image_width
y1 = (y - h / 2) * image_height
x2 = (x + w / 2) * image_width
y2 = (y + h / 2) * image_height
cls_id = int(label[0])
width = max(0., x2 - x1)
height = max(0., y2 - y1)
coco_format_info = {
'image_id': idx,
'id': obj_count,
'category_id': cls_id,
'bbox': [x1, y1, width, height],
'area': width * height,
'segmentation': [[x1, y1, x2, y1, x2, y2, x1, y2]],
'iscrowd': 0
}
obj_count += 1
return coco_format_info, obj_count
def organize_by_existing_files(image_dir: str, existed_categories: list):
"""Format annotations by existing train/val/test files."""
categories = ['train', 'val', 'test']
image_list = []
for cat in categories:
if cat in existed_categories:
txt_file = osp.join(image_dir, f'{cat}.txt')
print(f'Start to read {cat} dataset definition')
assert osp.exists(txt_file)
with open(txt_file) as f:
img_paths = f.readlines()
img_paths = [
os.path.split(img_path.strip())[1]
for img_path in img_paths
] # split the absolute path
image_list.append(img_paths)
else:
image_list.append([])
return image_list[0], image_list[1], image_list[2]
def convert_yolo_to_coco(image_dir: str):
"""Convert annotations from yolo style to coco style.
Args:
image_dir (str): the root directory of your datasets which contains
labels, images, classes.txt, etc
"""
print(f'Start to load existing images and annotations from {image_dir}')
check_existence(image_dir)
# check local environment
yolo_label_dir = osp.join(image_dir, 'labels')
yolo_image_dir = osp.join(image_dir, 'images')
yolo_class_txt = osp.join(image_dir, 'classes.txt')
check_existence(yolo_label_dir)
check_existence(yolo_image_dir)
check_existence(yolo_class_txt)
print(f'All necessary files are located at {image_dir}')
train_txt_path = osp.join(image_dir, 'train.txt')
val_txt_path = osp.join(image_dir, 'val.txt')
test_txt_path = osp.join(image_dir, 'test.txt')
existed_categories = []
print(f'Checking if train.txt, val.txt, and test.txt are in {image_dir}')
if osp.exists(train_txt_path):
print('Found train.txt')
existed_categories.append('train')
if osp.exists(val_txt_path):
print('Found val.txt')
existed_categories.append('val')
if osp.exists(test_txt_path):
print('Found test.txt')
existed_categories.append('test')
# prepare the output folders
output_folder = osp.join(image_dir, 'annotations')
if not osp.exists(output_folder):
os.makedirs(output_folder)
check_existence(output_folder)
# start the convert procedure
with open(yolo_class_txt) as f:
classes = f.read().strip().split()
indices = os.listdir(yolo_image_dir)
total = len(indices)
dataset = {'images': [], 'annotations': [], 'categories': []}
if existed_categories == []:
print('These files are not located, no need to organize separately.')
for i, cls in enumerate(classes, 0):
dataset['categories'].append({'id': i, 'name': cls})
else:
print('Need to organize the data accordingly.')
train_dataset = {'images': [], 'annotations': [], 'categories': []}
val_dataset = {'images': [], 'annotations': [], 'categories': []}
test_dataset = {'images': [], 'annotations': [], 'categories': []}
# category id starts from 0
for i, cls in enumerate(classes, 0):
train_dataset['categories'].append({'id': i, 'name': cls})
val_dataset['categories'].append({'id': i, 'name': cls})
test_dataset['categories'].append({'id': i, 'name': cls})
train_img, val_img, test_img = organize_by_existing_files(
image_dir, existed_categories)
obj_count = 0
skipped = 0
converted = 0
for idx, image in enumerate(mmengine.track_iter_progress(indices)):
img_info_dict, image_height, image_width = get_image_info(
yolo_image_dir, idx, image)
if existed_categories != []:
if image in train_img:
dataset = train_dataset
elif image in val_img:
dataset = val_dataset
elif image in test_img:
dataset = test_dataset
dataset['images'].append(img_info_dict)
img_name = osp.splitext(image)[0]
label_path = f'{osp.join(yolo_label_dir, img_name)}.txt'
if not osp.exists(label_path):
# if current image is not annotated or the annotation file failed
print(
f'WARNING: {label_path} does not exist. Please check the file.'
)
skipped += 1
continue
with open(label_path) as f:
labels = f.readlines()
for label in labels:
coco_info, obj_count = convert_bbox_info(
label, idx, obj_count, image_height, image_width)
dataset['annotations'].append(coco_info)
converted += 1
# saving results to result json
if existed_categories == []:
out_file = osp.join(image_dir, 'annotations/result.json')
print(f'Saving converted results to {out_file} ...')
mmengine.dump(dataset, out_file)
else:
for category in existed_categories:
out_file = osp.join(output_folder, f'{category}.json')
print(f'Saving converted results to {out_file} ...')
if category == 'train':
mmengine.dump(train_dataset, out_file)
elif category == 'val':
mmengine.dump(val_dataset, out_file)
elif category == 'test':
mmengine.dump(test_dataset, out_file)
# simple statistics
print(f'Process finished! Please check at {output_folder} .')
print(f'Number of images found: {total}, converted: {converted},',
f'and skipped: {skipped}. Total annotation count: {obj_count}.')
print('You can use tools/analysis_tools/browse_coco_json.py to visualize!')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'image_dir',
type=str,
help='dataset directory with ./images and ./labels, classes.txt, etc.')
arg = parser.parse_args()
convert_yolo_to_coco(arg.image_dir)
|