File size: 8,045 Bytes
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from torch import Tensor

_XYWH2XYXY = torch.tensor([[1.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 1.0],
                           [-0.5, 0.0, 0.5, 0.0], [0.0, -0.5, 0.0, 0.5]],
                          dtype=torch.float32)


class TRTEfficientNMSop(torch.autograd.Function):

    @staticmethod
    def forward(
        ctx,
        boxes: Tensor,
        scores: Tensor,
        background_class: int = -1,
        box_coding: int = 0,
        iou_threshold: float = 0.45,
        max_output_boxes: int = 100,
        plugin_version: str = '1',
        score_activation: int = 0,
        score_threshold: float = 0.25,
    ):
        batch_size, _, num_classes = scores.shape
        num_det = torch.randint(
            0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
        det_boxes = torch.randn(batch_size, max_output_boxes, 4)
        det_scores = torch.randn(batch_size, max_output_boxes)
        det_classes = torch.randint(
            0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
        return num_det, det_boxes, det_scores, det_classes

    @staticmethod
    def symbolic(g,
                 boxes: Tensor,
                 scores: Tensor,
                 background_class: int = -1,
                 box_coding: int = 0,
                 iou_threshold: float = 0.45,
                 max_output_boxes: int = 100,
                 plugin_version: str = '1',
                 score_activation: int = 0,
                 score_threshold: float = 0.25):
        out = g.op(
            'TRT::EfficientNMS_TRT',
            boxes,
            scores,
            background_class_i=background_class,
            box_coding_i=box_coding,
            iou_threshold_f=iou_threshold,
            max_output_boxes_i=max_output_boxes,
            plugin_version_s=plugin_version,
            score_activation_i=score_activation,
            score_threshold_f=score_threshold,
            outputs=4)
        num_det, det_boxes, det_scores, det_classes = out
        return num_det, det_boxes, det_scores, det_classes


class TRTbatchedNMSop(torch.autograd.Function):
    """TensorRT NMS operation."""

    @staticmethod
    def forward(
        ctx,
        boxes: Tensor,
        scores: Tensor,
        plugin_version: str = '1',
        shareLocation: int = 1,
        backgroundLabelId: int = -1,
        numClasses: int = 80,
        topK: int = 1000,
        keepTopK: int = 100,
        scoreThreshold: float = 0.25,
        iouThreshold: float = 0.45,
        isNormalized: int = 0,
        clipBoxes: int = 0,
        scoreBits: int = 16,
        caffeSemantics: int = 1,
    ):
        batch_size, _, numClasses = scores.shape
        num_det = torch.randint(
            0, keepTopK, (batch_size, 1), dtype=torch.int32)
        det_boxes = torch.randn(batch_size, keepTopK, 4)
        det_scores = torch.randn(batch_size, keepTopK)
        det_classes = torch.randint(0, numClasses,
                                    (batch_size, keepTopK)).float()
        return num_det, det_boxes, det_scores, det_classes

    @staticmethod
    def symbolic(
        g,
        boxes: Tensor,
        scores: Tensor,
        plugin_version: str = '1',
        shareLocation: int = 1,
        backgroundLabelId: int = -1,
        numClasses: int = 80,
        topK: int = 1000,
        keepTopK: int = 100,
        scoreThreshold: float = 0.25,
        iouThreshold: float = 0.45,
        isNormalized: int = 0,
        clipBoxes: int = 0,
        scoreBits: int = 16,
        caffeSemantics: int = 1,
    ):
        out = g.op(
            'TRT::BatchedNMSDynamic_TRT',
            boxes,
            scores,
            shareLocation_i=shareLocation,
            plugin_version_s=plugin_version,
            backgroundLabelId_i=backgroundLabelId,
            numClasses_i=numClasses,
            topK_i=topK,
            keepTopK_i=keepTopK,
            scoreThreshold_f=scoreThreshold,
            iouThreshold_f=iouThreshold,
            isNormalized_i=isNormalized,
            clipBoxes_i=clipBoxes,
            scoreBits_i=scoreBits,
            caffeSemantics_i=caffeSemantics,
            outputs=4)
        num_det, det_boxes, det_scores, det_classes = out
        return num_det, det_boxes, det_scores, det_classes


def _efficient_nms(
    boxes: Tensor,
    scores: Tensor,
    max_output_boxes_per_class: int = 1000,
    iou_threshold: float = 0.5,
    score_threshold: float = 0.05,
    pre_top_k: int = -1,
    keep_top_k: int = 100,
    box_coding: int = 0,
):
    """Wrapper for `efficient_nms` with TensorRT.
    Args:
        boxes (Tensor): The bounding boxes of shape [N, num_boxes, 4].
        scores (Tensor): The detection scores of shape
            [N, num_boxes, num_classes].
        max_output_boxes_per_class (int): Maximum number of output
            boxes per class of nms. Defaults to 1000.
        iou_threshold (float): IOU threshold of nms. Defaults to 0.5.
        score_threshold (float): score threshold of nms.
            Defaults to 0.05.
        pre_top_k (int): Number of top K boxes to keep before nms.
            Defaults to -1.
        keep_top_k (int): Number of top K boxes to keep after nms.
            Defaults to -1.
        box_coding (int): Bounding boxes format for nms.
            Defaults to 0 means [x1, y1 ,x2, y2].
            Set to 1 means [x, y, w, h].
    Returns:
        tuple[Tensor, Tensor, Tensor, Tensor]:
        (num_det, det_boxes, det_scores, det_classes),
        `num_det` of shape [N, 1]
        `det_boxes` of shape [N, num_det, 4]
        `det_scores` of shape [N, num_det]
        `det_classes` of shape [N, num_det]
    """
    num_det, det_boxes, det_scores, det_classes = TRTEfficientNMSop.apply(
        boxes, scores, -1, box_coding, iou_threshold, keep_top_k, '1', 0,
        score_threshold)
    return num_det, det_boxes, det_scores, det_classes


def _batched_nms(
    boxes: Tensor,
    scores: Tensor,
    max_output_boxes_per_class: int = 1000,
    iou_threshold: float = 0.5,
    score_threshold: float = 0.05,
    pre_top_k: int = -1,
    keep_top_k: int = 100,
    box_coding: int = 0,
):
    """Wrapper for `efficient_nms` with TensorRT.
    Args:
        boxes (Tensor): The bounding boxes of shape [N, num_boxes, 4].
        scores (Tensor): The detection scores of shape
            [N, num_boxes, num_classes].
        max_output_boxes_per_class (int): Maximum number of output
            boxes per class of nms. Defaults to 1000.
        iou_threshold (float): IOU threshold of nms. Defaults to 0.5.
        score_threshold (float): score threshold of nms.
            Defaults to 0.05.
        pre_top_k (int): Number of top K boxes to keep before nms.
            Defaults to -1.
        keep_top_k (int): Number of top K boxes to keep after nms.
            Defaults to -1.
        box_coding (int): Bounding boxes format for nms.
            Defaults to 0 means [x1, y1 ,x2, y2].
            Set to 1 means [x, y, w, h].
    Returns:
        tuple[Tensor, Tensor, Tensor, Tensor]:
        (num_det, det_boxes, det_scores, det_classes),
        `num_det` of shape [N, 1]
        `det_boxes` of shape [N, num_det, 4]
        `det_scores` of shape [N, num_det]
        `det_classes` of shape [N, num_det]
    """
    if box_coding == 1:
        boxes = boxes @ (_XYWH2XYXY.to(boxes.device))
    boxes = boxes if boxes.dim() == 4 else boxes.unsqueeze(2)
    _, _, numClasses = scores.shape

    num_det, det_boxes, det_scores, det_classes = TRTbatchedNMSop.apply(
        boxes, scores, '1', 1, -1, int(numClasses), min(pre_top_k, 4096),
        keep_top_k, score_threshold, iou_threshold, 0, 0, 16, 1)

    det_classes = det_classes.int()
    return num_det, det_boxes, det_scores, det_classes


def efficient_nms(*args, **kwargs):
    """Wrapper function for `_efficient_nms`."""
    return _efficient_nms(*args, **kwargs)


def batched_nms(*args, **kwargs):
    """Wrapper function for `_batched_nms`."""
    return _batched_nms(*args, **kwargs)