File size: 18,087 Bytes
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path
from statistics import median

import matplotlib.patches as mpatches
import matplotlib.pyplot as plt
import numpy as np
from mmengine.config import Config
from mmengine.registry import init_default_scope
from mmengine.utils import ProgressBar
from prettytable import PrettyTable

from mmyolo.registry import DATASETS
from mmyolo.utils.misc import show_data_classes


def parse_args():
    parser = argparse.ArgumentParser(
        description='Distribution of categories and bbox instances')
    parser.add_argument('config', help='config file path')
    parser.add_argument(
        '--val-dataset',
        default=False,
        action='store_true',
        help='The default train_dataset.'
        'To change it to val_dataset, enter "--val-dataset"')
    parser.add_argument(
        '--class-name',
        default=None,
        type=str,
        help='Display specific class, e.g., "bicycle"')
    parser.add_argument(
        '--area-rule',
        default=None,
        type=int,
        nargs='+',
        help='Redefine area rules,but no more than three numbers.'
        ' e.g., 30 70 125')
    parser.add_argument(
        '--func',
        default=None,
        type=str,
        choices=[
            'show_bbox_num', 'show_bbox_wh', 'show_bbox_wh_ratio',
            'show_bbox_area'
        ],
        help='Dataset analysis function selection.')
    parser.add_argument(
        '--out-dir',
        default='./dataset_analysis',
        type=str,
        help='Output directory of dataset analysis visualization results,'
        ' Save in "./dataset_analysis/" by default')
    args = parser.parse_args()
    return args


def show_bbox_num(cfg, out_dir, fig_set, class_name, class_num):
    """Display the distribution map of categories and number of bbox
    instances."""
    print('\n\nDrawing bbox_num figure:')
    # Draw designs
    fig = plt.figure(
        figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300)
    plt.bar(class_name, class_num, align='center')

    # Draw titles, labels and so on
    for x, y in enumerate(class_num):
        plt.text(x, y, '%s' % y, ha='center', fontsize=fig_set['fontsize'] + 3)
    plt.xticks(rotation=fig_set['xticks_angle'])
    plt.xlabel('Category Name')
    plt.ylabel('Num of instances')
    plt.title(cfg.dataset_type)

    # Save figure
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    out_name = fig_set['out_name']
    fig.savefig(
        f'{out_dir}/{out_name}_bbox_num.jpg',
        bbox_inches='tight',
        pad_inches=0.1)  # Save Image
    plt.close()
    print(f'End and save in {out_dir}/{out_name}_bbox_num.jpg')


def show_bbox_wh(out_dir, fig_set, class_bbox_w, class_bbox_h, class_name):
    """Display the width and height distribution of categories and bbox
    instances."""
    print('\n\nDrawing bbox_wh figure:')
    # Draw designs
    fig, ax = plt.subplots(
        figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300)

    # Set the position of the map and label on the x-axis
    positions_w = list(range(0, 12 * len(class_name), 12))
    positions_h = list(range(6, 12 * len(class_name), 12))
    positions_x_label = list(range(3, 12 * len(class_name) + 1, 12))
    ax.violinplot(
        class_bbox_w, positions_w, showmeans=True, showmedians=True, widths=4)
    ax.violinplot(
        class_bbox_h, positions_h, showmeans=True, showmedians=True, widths=4)

    # Draw titles, labels and so on
    plt.xticks(rotation=fig_set['xticks_angle'])
    plt.ylabel('The width or height of bbox')
    plt.xlabel('Class name')
    plt.title('Width or height distribution of classes and bbox instances')

    # Draw the max, min and median of wide data in violin chart
    for i in range(len(class_bbox_w)):
        plt.text(
            positions_w[i],
            median(class_bbox_w[i]),
            f'{"%.2f" % median(class_bbox_w[i])}',
            ha='center',
            fontsize=fig_set['fontsize'])
        plt.text(
            positions_w[i],
            max(class_bbox_w[i]),
            f'{"%.2f" % max(class_bbox_w[i])}',
            ha='center',
            fontsize=fig_set['fontsize'])
        plt.text(
            positions_w[i],
            min(class_bbox_w[i]),
            f'{"%.2f" % min(class_bbox_w[i])}',
            ha='center',
            fontsize=fig_set['fontsize'])

    # Draw the max, min and median of height data in violin chart
    for i in range(len(positions_h)):
        plt.text(
            positions_h[i],
            median(class_bbox_h[i]),
            f'{"%.2f" % median(class_bbox_h[i])}',
            ha='center',
            fontsize=fig_set['fontsize'])
        plt.text(
            positions_h[i],
            max(class_bbox_h[i]),
            f'{"%.2f" % max(class_bbox_h[i])}',
            ha='center',
            fontsize=fig_set['fontsize'])
        plt.text(
            positions_h[i],
            min(class_bbox_h[i]),
            f'{"%.2f" % min(class_bbox_h[i])}',
            ha='center',
            fontsize=fig_set['fontsize'])

    # Draw Legend
    plt.setp(ax, xticks=positions_x_label, xticklabels=class_name)
    labels = ['bbox_w', 'bbox_h']
    colors = ['steelblue', 'darkorange']
    patches = [
        mpatches.Patch(color=colors[i], label=f'{labels[i]:s}')
        for i in range(len(colors))
    ]
    ax = plt.gca()
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width, box.height * 0.8])
    ax.legend(loc='upper center', handles=patches, ncol=2)

    # Save figure
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    out_name = fig_set['out_name']
    fig.savefig(
        f'{out_dir}/{out_name}_bbox_wh.jpg',
        bbox_inches='tight',
        pad_inches=0.1)  # Save Image
    plt.close()
    print(f'End and save in {out_dir}/{out_name}_bbox_wh.jpg')


def show_bbox_wh_ratio(out_dir, fig_set, class_name, class_bbox_ratio):
    """Display the distribution map of category and bbox instance width and
    height ratio."""
    print('\n\nDrawing bbox_wh_ratio figure:')
    # Draw designs
    fig, ax = plt.subplots(
        figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300)

    # Set the position of the map and label on the x-axis
    positions = list(range(0, 6 * len(class_name), 6))
    ax.violinplot(
        class_bbox_ratio,
        positions,
        showmeans=True,
        showmedians=True,
        widths=5)

    # Draw titles, labels and so on
    plt.xticks(rotation=fig_set['xticks_angle'])
    plt.ylabel('Ratio of width to height of bbox')
    plt.xlabel('Class name')
    plt.title('Width to height ratio distribution of class and bbox instances')

    # Draw the max, min and median of wide data in violin chart
    for i in range(len(class_bbox_ratio)):
        plt.text(
            positions[i],
            median(class_bbox_ratio[i]),
            f'{"%.2f" % median(class_bbox_ratio[i])}',
            ha='center',
            fontsize=fig_set['fontsize'])
        plt.text(
            positions[i],
            max(class_bbox_ratio[i]),
            f'{"%.2f" % max(class_bbox_ratio[i])}',
            ha='center',
            fontsize=fig_set['fontsize'])
        plt.text(
            positions[i],
            min(class_bbox_ratio[i]),
            f'{"%.2f" % min(class_bbox_ratio[i])}',
            ha='center',
            fontsize=fig_set['fontsize'])

    # Set the position of the map and label on the x-axis
    plt.setp(ax, xticks=positions, xticklabels=class_name)

    # Save figure
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    out_name = fig_set['out_name']
    fig.savefig(
        f'{out_dir}/{out_name}_bbox_ratio.jpg',
        bbox_inches='tight',
        pad_inches=0.1)  # Save Image
    plt.close()
    print(f'End and save in {out_dir}/{out_name}_bbox_ratio.jpg')


def show_bbox_area(out_dir, fig_set, area_rule, class_name, bbox_area_num):
    """Display the distribution map of category and bbox instance area based on
    the rules of large, medium and small objects."""
    print('\n\nDrawing bbox_area figure:')
    # Set the direct distance of each label and the width of each histogram
    # Set the required labels and colors
    positions = np.arange(0, 2 * len(class_name), 2)
    width = 0.4
    labels = ['Small', 'Mediun', 'Large', 'Huge']
    colors = ['#438675', '#F7B469', '#6BA6DA', '#913221']

    # Draw designs
    fig = plt.figure(
        figsize=(fig_set['figsize'][0], fig_set['figsize'][1]), dpi=300)
    for i in range(len(area_rule) - 1):
        area_num = [bbox_area_num[idx][i] for idx in range(len(class_name))]
        plt.bar(
            positions + width * i,
            area_num,
            width,
            label=labels[i],
            color=colors[i])
        for idx, (x, y) in enumerate(zip(positions.tolist(), area_num)):
            plt.text(
                x + width * i,
                y,
                y,
                ha='center',
                fontsize=fig_set['fontsize'] - 1)

    # Draw titles, labels and so on
    plt.xticks(rotation=fig_set['xticks_angle'])
    plt.xticks(positions + width * ((len(area_rule) - 2) / 2), class_name)
    plt.ylabel('Class Area')
    plt.xlabel('Class Name')
    plt.title(
        'Area and number of large, medium and small objects of each class')

    # Set and Draw Legend
    patches = [
        mpatches.Patch(color=colors[i], label=f'{labels[i]:s}')
        for i in range(len(area_rule) - 1)
    ]
    ax = plt.gca()
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width, box.height * 0.8])
    ax.legend(loc='upper center', handles=patches, ncol=len(area_rule) - 1)

    # Save figure
    if not os.path.exists(out_dir):
        os.makedirs(out_dir)
    out_name = fig_set['out_name']
    fig.savefig(
        f'{out_dir}/{out_name}_bbox_area.jpg',
        bbox_inches='tight',
        pad_inches=0.1)  # Save Image
    plt.close()
    print(f'End and save in {out_dir}/{out_name}_bbox_area.jpg')


def show_class_list(classes, class_num):
    """Print the data of the class obtained by the current run."""
    print('\n\nThe information obtained is as follows:')
    class_info = PrettyTable()
    class_info.title = 'Information of dataset class'
    # List Print Settings
    # If the quantity is too large, 25 rows will be displayed in each column
    if len(classes) < 25:
        class_info.add_column('Class name', classes)
        class_info.add_column('Bbox num', class_num)
    elif len(classes) % 25 != 0 and len(classes) > 25:
        col_num = int(len(classes) / 25) + 1
        class_nums = class_num.tolist()
        class_name_list = list(classes)
        for i in range(0, (col_num * 25) - len(classes)):
            class_name_list.append('')
            class_nums.append('')
        for i in range(0, len(class_name_list), 25):
            class_info.add_column('Class name', class_name_list[i:i + 25])
            class_info.add_column('Bbox num', class_nums[i:i + 25])

    # Align display data to the left
    class_info.align['Class name'] = 'l'
    class_info.align['Bbox num'] = 'l'
    print(class_info)


def show_data_list(args, area_rule):
    """Print run setup information."""
    print('\n\nPrint current running information:')
    data_info = PrettyTable()
    data_info.title = 'Dataset information'
    # Print the corresponding information according to the settings
    if args.val_dataset is False:
        data_info.add_column('Dataset type', ['train_dataset'])
    elif args.val_dataset is True:
        data_info.add_column('Dataset type', ['val_dataset'])
    if args.class_name is None:
        data_info.add_column('Class name', ['All classes'])
    else:
        data_info.add_column('Class name', [args.class_name])
    if args.func is None:
        data_info.add_column('Function', ['All function'])
    else:
        data_info.add_column('Function', [args.func])
    data_info.add_column('Area rule', [area_rule])

    print(data_info)


def main():
    args = parse_args()
    cfg = Config.fromfile(args.config)

    init_default_scope(cfg.get('default_scope', 'mmyolo'))

    def replace_pipeline_to_none(cfg):
        """Recursively iterate over all dataset(or datasets) and set their
        pipelines to none.Datasets are mean ConcatDataset.

        Recursively terminates only when all dataset(or datasets) have been
        traversed
        """

        if cfg.get('dataset', None) is None and cfg.get('datasets',
                                                        None) is None:
            return
        dataset = cfg.dataset if cfg.get('dataset', None) else cfg.datasets
        if isinstance(dataset, list):
            for item in dataset:
                item.pipeline = None
        elif dataset.get('pipeline', None):
            dataset.pipeline = None
        else:
            replace_pipeline_to_none(dataset)

    # 1.Build Dataset
    if args.val_dataset is False:
        replace_pipeline_to_none(cfg.train_dataloader)
        dataset = DATASETS.build(cfg.train_dataloader.dataset)
    else:
        replace_pipeline_to_none(cfg.val_dataloader)
        dataset = DATASETS.build(cfg.val_dataloader.dataset)

    # 2.Prepare data
    # Drawing settings
    fig_all_set = {
        'figsize': [35, 18],
        'fontsize': int(10 - 0.08 * len(dataset.metainfo['classes'])),
        'xticks_angle': 70,
        'out_name': cfg.dataset_type
    }
    fig_one_set = {
        'figsize': [15, 10],
        'fontsize': 10,
        'xticks_angle': 0,
        'out_name': args.class_name
    }

    # Call the category name and save address
    if args.class_name is None:
        classes = dataset.metainfo['classes']
        classes_idx = [i for i in range(len(classes))]
        fig_set = fig_all_set
    elif args.class_name in dataset.metainfo['classes']:
        classes = [args.class_name]
        classes_idx = [dataset.metainfo['classes'].index(args.class_name)]
        fig_set = fig_one_set
    else:
        data_classes = dataset.metainfo['classes']
        show_data_classes(data_classes)
        raise RuntimeError(f'Expected args.class_name to be one of the list,'
                           f'but got "{args.class_name}"')

    # Building Area Rules
    if args.area_rule is None:
        area_rule = [0, 32, 96, 1e5]
    elif args.area_rule and len(args.area_rule) <= 3:
        area_rules = [0] + args.area_rule + [1e5]
        area_rule = sorted(area_rules)
    else:
        raise RuntimeError(
            f'Expected the "{args.area_rule}" to be e.g. 30 60 120, '
            'and no more than three numbers.')

    # Build arrays or lists to store data for each category
    class_num = np.zeros((len(classes), ), dtype=np.int64)
    class_bbox = [[] for _ in classes]
    class_name = []
    class_bbox_w = []
    class_bbox_h = []
    class_bbox_ratio = []
    bbox_area_num = []

    show_data_list(args, area_rule)
    # Get the quantity and bbox data corresponding to each category
    print('\nRead the information of each picture in the dataset:')
    progress_bar = ProgressBar(len(dataset))
    for index in range(len(dataset)):
        for instance in dataset[index]['instances']:
            if instance[
                    'bbox_label'] in classes_idx and args.class_name is None:
                class_num[instance['bbox_label']] += 1
                class_bbox[instance['bbox_label']].append(instance['bbox'])
            elif instance['bbox_label'] in classes_idx and args.class_name:
                class_num[0] += 1
                class_bbox[0].append(instance['bbox'])
        progress_bar.update()
    show_class_list(classes, class_num)
    # Get the width, height and area of bbox corresponding to each category
    print('\nRead bbox information in each class:')
    progress_bar_classes = ProgressBar(len(classes))
    for idx, (classes, classes_idx) in enumerate(zip(classes, classes_idx)):
        bbox = np.array(class_bbox[idx])
        bbox_area_nums = np.zeros((len(area_rule) - 1, ), dtype=np.int64)
        if len(bbox) > 0:
            bbox_wh = bbox[:, 2:4] - bbox[:, 0:2]
            bbox_ratio = bbox_wh[:, 0] / bbox_wh[:, 1]
            bbox_area = bbox_wh[:, 0] * bbox_wh[:, 1]
            class_bbox_w.append(bbox_wh[:, 0].tolist())
            class_bbox_h.append(bbox_wh[:, 1].tolist())
            class_bbox_ratio.append(bbox_ratio.tolist())

            # The area rule, there is an section between two numbers
            for i in range(len(area_rule) - 1):
                bbox_area_nums[i] = np.logical_and(
                    bbox_area >= area_rule[i]**2,
                    bbox_area < area_rule[i + 1]**2).sum()
        elif len(bbox) == 0:
            class_bbox_w.append([0])
            class_bbox_h.append([0])
            class_bbox_ratio.append([0])

        class_name.append(classes)
        bbox_area_num.append(bbox_area_nums.tolist())
        progress_bar_classes.update()

    # 3.draw Dataset Information
    if args.func is None:
        show_bbox_num(cfg, args.out_dir, fig_set, class_name, class_num)
        show_bbox_wh(args.out_dir, fig_set, class_bbox_w, class_bbox_h,
                     class_name)
        show_bbox_wh_ratio(args.out_dir, fig_set, class_name, class_bbox_ratio)
        show_bbox_area(args.out_dir, fig_set, area_rule, class_name,
                       bbox_area_num)
    elif args.func == 'show_bbox_num':
        show_bbox_num(cfg, args.out_dir, fig_set, class_name, class_num)
    elif args.func == 'show_bbox_wh':
        show_bbox_wh(args.out_dir, fig_set, class_bbox_w, class_bbox_h,
                     class_name)
    elif args.func == 'show_bbox_wh_ratio':
        show_bbox_wh_ratio(args.out_dir, fig_set, class_name, class_bbox_ratio)
    elif args.func == 'show_bbox_area':
        show_bbox_area(args.out_dir, fig_set, area_rule, class_name,
                       bbox_area_num)
    else:
        raise RuntimeError(
            'Please enter the correct func name, e.g., show_bbox_num')


if __name__ == '__main__':
    main()