File size: 6,558 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import sys
import warnings
import mmcv
import numpy as np
import torch
from mmengine import ProgressBar
from mmengine.config import Config, DictAction
from mmengine.dataset import COLLATE_FUNCTIONS
from mmengine.runner.checkpoint import load_checkpoint
from numpy import random
from mmyolo.registry import DATASETS, MODELS
from mmyolo.utils import register_all_modules
from projects.assigner_visualization.dense_heads import (RTMHeadAssigner,
YOLOv5HeadAssigner,
YOLOv7HeadAssigner,
YOLOv8HeadAssigner)
from projects.assigner_visualization.visualization import \
YOLOAssignerVisualizer
def parse_args():
parser = argparse.ArgumentParser(
description='MMYOLO show the positive sample assigning'
' results.')
parser.add_argument('config', help='config file path')
parser.add_argument('--checkpoint', '-c', type=str, help='checkpoint file')
parser.add_argument(
'--show-number',
'-n',
type=int,
default=sys.maxsize,
help='number of images selected to save, '
'must bigger than 0. if the number is bigger than length '
'of dataset, show all the images in dataset; '
'default "sys.maxsize", show all images in dataset')
parser.add_argument(
'--output-dir',
default='assigned_results',
type=str,
help='The name of the folder where the image is saved.')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference.')
parser.add_argument(
'--show-prior',
default=False,
action='store_true',
help='Whether to show prior on image.')
parser.add_argument(
'--not-show-label',
default=False,
action='store_true',
help='Whether to show label on image.')
parser.add_argument('--seed', default=-1, type=int, help='random seed')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def main():
args = parse_args()
register_all_modules()
# set random seed
seed = int(args.seed)
if seed != -1:
print(f'Set the global seed: {seed}')
random.seed(int(args.seed))
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
# build model
model = MODELS.build(cfg.model)
if args.checkpoint is not None:
load_checkpoint(model, args.checkpoint)
elif isinstance(model.bbox_head, (YOLOv7HeadAssigner, RTMHeadAssigner)):
warnings.warn(
'if you use dynamic_assignment methods such as YOLOv7 or '
'YOLOv8 or RTMDet assigner, please load the checkpoint.')
assert isinstance(model.bbox_head, (YOLOv5HeadAssigner,
YOLOv7HeadAssigner,
YOLOv8HeadAssigner,
RTMHeadAssigner)), \
'Now, this script only support YOLOv5, YOLOv7, YOLOv8 and RTMdet, ' \
'and bbox_head must use ' \
'`YOLOv5HeadAssigner or YOLOv7HeadAssigne or YOLOv8HeadAssigner ' \
'or RTMHeadAssigner`. Please use `' \
'yolov5_s-v61_syncbn_fast_8xb16-300e_coco_assignervisualization.py' \
'or yolov7_tiny_syncbn_fast_8x16b-300e_coco_assignervisualization.py' \
'or yolov8_s_syncbn_fast_8xb16-500e_coco_assignervisualization.py' \
'or rtmdet_s_syncbn_fast_8xb32-300e_coco_assignervisualization.py' \
"""` as config file."""
model.eval()
model.to(args.device)
# build dataset
dataset_cfg = cfg.get('train_dataloader').get('dataset')
dataset = DATASETS.build(dataset_cfg)
# get collate_fn
collate_fn_cfg = cfg.get('train_dataloader').pop(
'collate_fn', dict(type='pseudo_collate'))
collate_fn_type = collate_fn_cfg.pop('type')
collate_fn = COLLATE_FUNCTIONS.get(collate_fn_type)
# init visualizer
visualizer = YOLOAssignerVisualizer(
vis_backends=[{
'type': 'LocalVisBackend'
}], name='visualizer')
visualizer.dataset_meta = dataset.metainfo
# need priors size to draw priors
if hasattr(model.bbox_head.prior_generator, 'base_anchors'):
visualizer.priors_size = model.bbox_head.prior_generator.base_anchors
# make output dir
os.makedirs(args.output_dir, exist_ok=True)
print('Results will save to ', args.output_dir)
# init visualization image number
assert args.show_number > 0
display_number = min(args.show_number, len(dataset))
progress_bar = ProgressBar(display_number)
for ind_img in range(display_number):
data = dataset.prepare_data(ind_img)
if data is None:
print('Unable to visualize {} due to strong data augmentations'.
format(dataset[ind_img]['data_samples'].img_path))
continue
# convert data to batch format
batch_data = collate_fn([data])
with torch.no_grad():
assign_results = model.assign(batch_data)
img = data['inputs'].cpu().numpy().astype(np.uint8).transpose(
(1, 2, 0))
# bgr2rgb
img = mmcv.bgr2rgb(img)
gt_instances = data['data_samples'].gt_instances
img_show = visualizer.draw_assign(img, assign_results, gt_instances,
args.show_prior, args.not_show_label)
if hasattr(data['data_samples'], 'img_path'):
filename = osp.basename(data['data_samples'].img_path)
else:
# some dataset have not image path
filename = f'{ind_img}.jpg'
out_file = osp.join(args.output_dir, filename)
# convert rgb 2 bgr and save img
mmcv.imwrite(mmcv.rgb2bgr(img_show), out_file)
progress_bar.update()
if __name__ == '__main__':
main()
|