File size: 20,591 Bytes
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# Copyright (c) OpenMMLab. All rights reserved.
# Reference: https://github.com/jbwang1997/BboxToolkit

import argparse
import codecs
import datetime
import itertools
import os
import os.path as osp
import time
from functools import partial, reduce
from math import ceil
from multiprocessing import Manager, Pool
from typing import List, Sequence

import cv2
import numpy as np
from mmengine import Config, MMLogger, mkdir_or_exist, print_log
from PIL import Image

Image.MAX_IMAGE_PIXELS = None

try:
    import shapely.geometry as shgeo
except ImportError:
    raise ImportError('Please run "pip install shapely" '
                      'to install shapely first.')

PHASE_REQUIRE_SETS = dict(
    trainval=['train', 'val'],
    train=[
        'train',
    ],
    val=[
        'val',
    ],
    test=[
        'test',
    ],
)


def parse_args():
    """Parse arguments."""
    parser = argparse.ArgumentParser()
    parser.add_argument(
        'split_config', type=str, help='The split config for image slicing.')
    parser.add_argument(
        'data_root', type=str, help='Root dir of DOTA dataset.')
    parser.add_argument(
        'out_dir', type=str, help='Output dir for split result.')
    parser.add_argument(
        '--ann-subdir',
        default='labelTxt-v1.0',
        type=str,
        help='output directory')
    parser.add_argument(
        '--phase',
        '-p',
        nargs='+',
        default=['trainval', 'test'],
        type=str,
        choices=['trainval', 'train', 'val', 'test'],
        help='Phase of the data set to be prepared.')
    parser.add_argument(
        '--nproc', default=8, type=int, help='Number of processes.')
    parser.add_argument(
        '--save-ext',
        default=None,
        type=str,
        help='Extension of the saved image.')
    parser.add_argument(
        '--overwrite',
        action='store_true',
        help='Whether to allow overwrite if annotation folder exist.')
    args = parser.parse_args()

    assert args.split_config is not None, "argument split_config can't be None"
    split_cfg = Config.fromfile(args.split_config)

    # assert arguments
    assert args.data_root is not None, "argument data_root can't be None"
    if args.save_ext:
        assert args.save_ext in ['png', 'jpg', 'bmp', 'tif']

    assert len(split_cfg.patch_sizes) == len(split_cfg.patch_overlap_sizes)
    assert 0 <= split_cfg.iof_thr <= 1
    if split_cfg.get('padding'):
        padding_value = split_cfg.get('padding_value')
        assert padding_value is not None, \
            "padding_value can't be None when padding is True."
        padding_value = padding_value[0] \
            if len(padding_value) == 1 else padding_value
        split_cfg.padding_value = padding_value
    else:
        split_cfg.padding = False
        split_cfg.padding_value = None
    return args, split_cfg


def _make_dirs(out_dir: str, phase: List[str], allow_overwrite: bool):
    """Prepare folder for DOTA dataset.

    Args:
        out_dir (str): The output dir for DOTA split.
        phase (List[str]): The phase to prepare.
        allow_overwrite (bool): Whether to allow overwrite when folder exist.
    """
    logger = MMLogger.get_current_instance()
    for p in phase:
        phase_dir = osp.join(out_dir, p)
        if not allow_overwrite:
            assert not osp.exists(phase_dir), \
                f'{osp.join(phase_dir)} already exists,' \
                'If you want to ignore existing files, set --overwrite'
        else:
            if osp.exists(phase_dir):
                logger.warning(
                    f'{p} set in {osp.join(phase_dir)} will be overwritten')
        mkdir_or_exist(phase_dir)
        mkdir_or_exist(osp.join(phase_dir, 'images'))
        mkdir_or_exist(osp.join(phase_dir, 'annfiles'))


def load_original_annotations(data_root: str,
                              ann_subdir: str = 'labelTxt-v1.0',
                              phase: str = 'train',
                              nproc: int = 8):
    img_dir = osp.join(data_root, phase, 'images')
    assert osp.isdir(img_dir), f'The {img_dir} is not an existing dir!'

    if phase == 'test':
        ann_dir = None
    else:
        ann_dir = osp.join(data_root, phase, ann_subdir, 'labelTxt')
        assert osp.isdir(ann_dir), f'The {ann_dir} is not an existing dir!'

    _load_func = partial(_load_dota_single, img_dir=img_dir, ann_dir=ann_dir)
    if nproc > 1:
        pool = Pool(nproc)
        contents = pool.map(_load_func, os.listdir(img_dir))
        pool.close()
    else:
        contents = list(map(_load_func, os.listdir(img_dir)))
    infos = [c for c in contents if c is not None]
    return infos


def _load_dota_single(imgfile: str, img_dir: str, ann_dir: str):
    """Load DOTA's single image.

    Args:
        imgfile (str): Filename of single image.
        img_dir (str): Path of images.
        ann_dir (str): Path of annotations.

    Returns:
        result (dict): Information of a single image.

        - ``id``: Image id.
        - ``filename``: Filename of single image.
        - ``filepath``: Filepath of single image.
        - ``width``: The width of image.
        - ``height``: The height of image.
        - ``annotations``: The annotation of single image.
        - ``gsd``: The ground sampling distance.
    """
    img_id, ext = osp.splitext(imgfile)
    if ext not in ['.jpg', '.JPG', '.png', '.tif', '.bmp']:
        return None

    imgpath = osp.join(img_dir, imgfile)
    size = Image.open(imgpath).size
    txtfile = None if ann_dir is None else osp.join(ann_dir, img_id + '.txt')
    content = _load_dota_txt(txtfile)

    content.update(
        dict(
            width=size[0],
            height=size[1],
            filename=imgfile,
            filepath=imgpath,
            id=img_id))
    return content


def _load_dota_txt(txtfile):
    """Load DOTA's txt annotation.

    Args:
        txtfile (str): Filename of single Dota txt annotation.

    Returns:
        result (dict): Annotation of single image.

        - ``annotations``: The annotation of single image.
        - ``gsd``: The ground sampling distance.
    """
    gsd, bboxes, labels, diffs = None, [], [], []
    if txtfile is None:
        pass
    elif not osp.isfile(txtfile):
        print(f"Can't find {txtfile}, treated as empty txtfile")
    else:
        with open(txtfile) as f:
            for line in f:
                if line.startswith('gsd'):
                    num = line.split(':')[-1]
                    try:
                        gsd = float(num)
                    except ValueError:
                        gsd = None
                    continue

                items = line.split(' ')
                if len(items) >= 9:
                    bboxes.append([float(i) for i in items[:8]])
                    labels.append(items[8])
                    diffs.append(int(items[9]) if len(items) == 10 else 0)

    bboxes = np.array(bboxes, dtype=np.float32) if bboxes else \
        np.zeros((0, 8), dtype=np.float32)
    diffs = np.array(diffs, dtype=np.int64) if diffs else \
        np.zeros((0,), dtype=np.int64)
    ann = dict(bboxes=bboxes, labels=labels, diffs=diffs)
    return dict(gsd=gsd, annotations=ann)


def poly2hbb(polys):
    """Convert polygons to horizontal bboxes.

    Args:
        polys (np.array): Polygons with shape (N, 8)

    Returns:
        np.array: Horizontal bboxes.
    """
    shape = polys.shape
    polys = polys.reshape(*shape[:-1], shape[-1] // 2, 2)
    lt_point = np.min(polys, axis=-2)
    rb_point = np.max(polys, axis=-2)
    return np.concatenate([lt_point, rb_point], axis=-1)


def get_sliding_window(info, patch_settings, img_rate_thr):
    """Get sliding windows.

    Args:
        info (dict): Dict of image's width and height.
        patch_settings (list): List of patch settings,
            each in format (patch_size, patch_overlap).
        img_rate_thr (float): Threshold of window area divided by image area.

    Returns:
        list[np.array]: Information of valid windows.
    """
    eps = 0.01
    windows = []
    width, height = info['width'], info['height']
    for (size, gap) in patch_settings:
        assert size > gap, f'invaild size gap pair [{size} {gap}]'
        step = size - gap

        x_num = 1 if width <= size else ceil((width - size) / step + 1)
        x_start = [step * i for i in range(x_num)]
        if len(x_start) > 1 and x_start[-1] + size > width:
            x_start[-1] = width - size

        y_num = 1 if height <= size else ceil((height - size) / step + 1)
        y_start = [step * i for i in range(y_num)]
        if len(y_start) > 1 and y_start[-1] + size > height:
            y_start[-1] = height - size

        start = np.array(
            list(itertools.product(x_start, y_start)), dtype=np.int64)
        stop = start + size
        windows.append(np.concatenate([start, stop], axis=1))
    windows = np.concatenate(windows, axis=0)

    img_in_wins = windows.copy()
    img_in_wins[:, 0::2] = np.clip(img_in_wins[:, 0::2], 0, width)
    img_in_wins[:, 1::2] = np.clip(img_in_wins[:, 1::2], 0, height)
    img_areas = (img_in_wins[:, 2] - img_in_wins[:, 0]) * \
                (img_in_wins[:, 3] - img_in_wins[:, 1])
    win_areas = (windows[:, 2] - windows[:, 0]) * \
                (windows[:, 3] - windows[:, 1])
    img_rates = img_areas / win_areas
    if not (img_rates > img_rate_thr).any():
        max_rate = img_rates.max()
        img_rates[abs(img_rates - max_rate) < eps] = 1
    return windows[img_rates > img_rate_thr]


def get_window_annotation(info, windows, iof_thr):
    """Get annotation by sliding windows.

    Args:
        info (dict): Dict of bbox annotations.
        windows (np.array): information of sliding windows.
        iof_thr (float): Threshold of overlaps between bbox and window.

    Returns:
        list[dict]: List of bbox annotations of every window.
    """
    bboxes = info['annotations']['bboxes']
    iofs = ann_window_iof(bboxes, windows)

    window_anns = []
    for i in range(windows.shape[0]):
        win_iofs = iofs[:, i]
        pos_inds = np.nonzero(win_iofs >= iof_thr)[0].tolist()

        win_ann = dict()
        for k, v in info['annotations'].items():
            try:
                win_ann[k] = v[pos_inds]
            except TypeError:
                win_ann[k] = [v[i] for i in pos_inds]
        win_ann['trunc'] = win_iofs[pos_inds] < 1
        window_anns.append(win_ann)
    return window_anns


def ann_window_iof(anns, window, eps=1e-6):
    """Compute overlaps (iof) between annotations (poly) and window (hbox).

    Args:
        anns (np.array): quadri annotations with shape (n, 8).
        window (np.array): slide windows with shape (m, 4).
        eps (float, optional): Defaults to 1e-6.

    Returns:
        np.array: iof between box and window.
    """
    rows = anns.shape[0]
    cols = window.shape[0]

    if rows * cols == 0:
        return np.zeros((rows, cols), dtype=np.float32)

    hbboxes_ann = poly2hbb(anns)
    hbboxes_win = window
    hbboxes_ann = hbboxes_ann[:, None, :]
    lt = np.maximum(hbboxes_ann[..., :2], hbboxes_win[..., :2])
    rb = np.minimum(hbboxes_ann[..., 2:], hbboxes_win[..., 2:])
    wh = np.clip(rb - lt, 0, np.inf)
    h_overlaps = wh[..., 0] * wh[..., 1]

    l, t, r, b = (window[..., i] for i in range(4))
    polys_win = np.stack([l, t, r, t, r, b, l, b], axis=-1)
    sg_polys_ann = [shgeo.Polygon(p) for p in anns.reshape(rows, -1, 2)]
    sg_polys_win = [shgeo.Polygon(p) for p in polys_win.reshape(cols, -1, 2)]
    overlaps = np.zeros(h_overlaps.shape)
    for p in zip(*np.nonzero(h_overlaps)):
        overlaps[p] = sg_polys_ann[p[0]].intersection(sg_polys_win[p[-1]]).area
    unions = np.array([p.area for p in sg_polys_ann], dtype=np.float32)
    unions = unions[..., None]

    unions = np.clip(unions, eps, np.inf)
    outputs = overlaps / unions
    if outputs.ndim == 1:
        outputs = outputs[..., None]
    return outputs


def crop_and_save_img(info, windows, window_anns, padding, padding_value,
                      save_dir, anno_dir, img_ext):
    """Crop the image and save.

    Args:
        info (dict): Image's information.
        windows (np.array): information of sliding windows.
        window_anns (list[dict]): List of bbox annotations of every window.
        padding (bool): If True, with padding.
        padding_value (tuple[int|float]): Padding value.
        save_dir (str): Save filename.
        anno_dir (str): Annotation filename.
        img_ext (str): Picture suffix.

    Returns:
        list[dict]: Information of paths.
    """
    img = cv2.imread(info['filepath'])
    patch_infos = []
    for window, ann in zip(windows, window_anns):
        patch_info = dict()
        for k, v in info.items():
            if k not in [
                    'id', 'filename', 'filepath', 'width', 'height',
                    'annotations'
            ]:
                patch_info[k] = v

        x_start, y_start, x_stop, y_stop = window.tolist()
        patch_info['x_start'] = x_start
        patch_info['y_start'] = y_start
        patch_info['id'] = \
            info['id'] + '__' + str(x_stop - x_start) + \
            '__' + str(x_start) + '___' + str(y_start)
        patch_info['ori_id'] = info['id']

        ann['bboxes'] = shift_qbboxes(ann['bboxes'], [-x_start, -y_start])
        patch_info['ann'] = ann

        patch = img[y_start:y_stop, x_start:x_stop]
        if padding:
            height = y_stop - y_start
            width = x_stop - x_start
            if height > patch.shape[0] or width > patch.shape[1]:
                padding_patch = np.empty((height, width, patch.shape[-1]),
                                         dtype=np.uint8)
                if not isinstance(padding_value, (int, float)):
                    assert len(padding_value) == patch.shape[-1]
                padding_patch[...] = padding_value
                padding_patch[:patch.shape[0], :patch.shape[1], ...] = patch
                patch = padding_patch
        patch_info['height'] = patch.shape[0]
        patch_info['width'] = patch.shape[1]

        cv2.imwrite(
            osp.join(save_dir, patch_info['id'] + '.' + img_ext), patch)
        patch_info['filename'] = patch_info['id'] + '.' + img_ext
        patch_infos.append(patch_info)

        bboxes_num = patch_info['ann']['bboxes'].shape[0]
        outdir = os.path.join(anno_dir, patch_info['id'] + '.txt')

        with codecs.open(outdir, 'w', 'utf-8') as f_out:
            if bboxes_num == 0:
                pass
            else:
                for idx in range(bboxes_num):
                    obj = patch_info['ann']
                    outline = ' '.join(list(map(str, obj['bboxes'][idx])))
                    diffs = str(
                        obj['diffs'][idx]) if not obj['trunc'][idx] else '2'
                    outline = outline + ' ' + obj['labels'][idx] + ' ' + diffs
                    f_out.write(outline + '\n')

    return patch_infos


def shift_qbboxes(bboxes, offset: Sequence[float]):
    """Map bboxes from window coordinate back to original coordinate. TODO
    Refactor and move to `mmyolo/utils/large_image.py`

    Args:
        bboxes (np.array): quadrilateral boxes with window coordinate.
        offset (Sequence[float]): The translation offsets with shape of (2, ).

    Returns:
        np.array: bboxes with original coordinate.
    """
    dim = bboxes.shape[-1]
    translated = bboxes + np.array(offset * int(dim / 2), dtype=np.float32)
    return translated


def single_split(info, patch_settings, min_img_ratio, iof_thr, padding,
                 padding_value, save_dir, anno_dir, img_ext, lock, prog,
                 total):
    """Single image split. TODO Refactoring to make it more generic.

    Args:
        info (dict): Image info and annotations.
        patch_settings (list): List of patch settings,
            each in format (patch_size, patch_overlap).
        min_img_ratio (float): Threshold of window area divided by image area.
        iof_thr (float): Threshold of overlaps between bbox and window.
        padding (bool): If True, with padding.
        padding_value (tuple[int|float]): Padding value.
        save_dir (str): Save filename.
        anno_dir (str): Annotation filename.
        img_ext (str): Picture suffix.
        lock (Lock): Lock of Manager.
        prog (object): Progress of Manager.
        total (int): Length of infos.

    Returns:
        list[dict]: Information of paths.
    """
    img_ext = img_ext if img_ext is not None else info['filename'].split(
        '.')[-1]
    windows = get_sliding_window(info, patch_settings, min_img_ratio)
    window_anns = get_window_annotation(info, windows, iof_thr)
    patch_infos = crop_and_save_img(info, windows, window_anns, padding,
                                    padding_value, save_dir, anno_dir, img_ext)
    assert patch_infos

    lock.acquire()
    prog.value += 1
    msg = f'({prog.value / total:3.1%} {prog.value}:{total})'
    msg += ' - ' + f"Filename: {info['filename']}"
    msg += ' - ' + f"width: {info['width']:<5d}"
    msg += ' - ' + f"height: {info['height']:<5d}"
    msg += ' - ' + f"Objects: {len(info['annotations']['bboxes']):<5d}"
    msg += ' - ' + f'Patches: {len(patch_infos)}'
    print_log(msg, 'current')
    lock.release()

    return patch_infos


def main():
    args, split_cfg = parse_args()

    mkdir_or_exist(args.out_dir)

    # init logger
    log_file_name = datetime.datetime.now().strftime('%Y%m%d_%H%M%S') + '.log'
    logger: MMLogger = MMLogger.get_instance(
        'mmyolo',
        log_file=osp.join(args.out_dir, log_file_name),
        log_level='INFO')

    # print configs
    arg_str = ''
    for arg in args._get_kwargs():
        arg_str += arg[0] + ' = ' + str(arg[1]) + '\n'

    logger.info('Base Settings:\n' + arg_str)
    logger.info('Split Settings:\n' + split_cfg.pretty_text)

    # make dirs
    _make_dirs(args.out_dir, args.phase, args.overwrite)

    # Load original dota data
    required_sets = []
    for p in args.phase:
        required_sets.extend(PHASE_REQUIRE_SETS[p])
    required_sets = set(required_sets)

    loaded_data_set = dict()
    for req_set in required_sets:
        logger.info(f'Starting loading DOTA {req_set} set information.')
        start_time = time.time()

        infos = load_original_annotations(
            data_root=args.data_root,
            ann_subdir=args.ann_subdir,
            phase=req_set)

        end_time = time.time()
        result_log = f'Finishing loading {req_set} set, '
        result_log += f'get {len(infos)} images, '
        result_log += f'using {end_time - start_time:.3f}s.'
        logger.info(result_log)

        loaded_data_set[req_set] = infos

    # Preprocess patch settings
    patch_settings = []
    for ratio in split_cfg.img_resize_ratio:
        for size, gap in zip(split_cfg.patch_sizes,
                             split_cfg.patch_overlap_sizes):
            size_gap = (int(size / ratio), int(gap / ratio))
            if size_gap not in patch_settings:
                patch_settings.append(size_gap)

    # Split data
    for p in args.phase:
        save_imgs_dir = osp.join(args.out_dir, p, 'images')
        save_anns_dir = osp.join(args.out_dir, p, 'annfiles')

        logger.info(f'Start splitting {p} set images!')
        start = time.time()
        manager = Manager()

        data_infos = []
        for req_set in PHASE_REQUIRE_SETS[p]:
            data_infos.extend(loaded_data_set[req_set])

        worker = partial(
            single_split,
            patch_settings=patch_settings,
            min_img_ratio=split_cfg.min_img_ratio,
            iof_thr=split_cfg.iof_thr,
            padding=split_cfg.padding,
            padding_value=split_cfg.padding_value,
            save_dir=save_imgs_dir,
            anno_dir=save_anns_dir,
            img_ext=args.save_ext,
            lock=manager.Lock(),
            prog=manager.Value('i', 0),
            total=len(data_infos))

        if args.nproc > 1:
            pool = Pool(args.nproc)
            patch_infos = pool.map(worker, data_infos)
            pool.close()
        else:
            patch_infos = list(map(worker, data_infos))

        patch_infos = reduce(lambda x, y: x + y, patch_infos)
        stop = time.time()
        logger.info(
            f'Finish splitting {p} set images in {int(stop - start)} second!!!'
        )
        logger.info(f'Total images number: {len(patch_infos)}')


if __name__ == '__main__':
    main()