File size: 7,738 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import argparse
import pickle
from collections import OrderedDict
import torch
def convert_bn(k: str):
name = k.replace('._mean',
'.running_mean').replace('._variance', '.running_var')
return name
def convert_repvgg(k: str):
if '.conv2.conv1.' in k:
name = k.replace('.conv2.conv1.', '.conv2.rbr_dense.')
return name
elif '.conv2.conv2.' in k:
name = k.replace('.conv2.conv2.', '.conv2.rbr_1x1.')
return name
else:
return k
def convert(src: str, dst: str, imagenet_pretrain: bool = False):
with open(src, 'rb') as f:
model = pickle.load(f)
new_state_dict = OrderedDict()
if imagenet_pretrain:
for k, v in model.items():
if '@@' in k:
continue
if 'stem.' in k:
# backbone.stem.conv1.conv.weight
# -> backbone.stem.0.conv.weight
org_ind = k.split('.')[1][-1]
new_ind = str(int(org_ind) - 1)
name = k.replace('stem.conv%s.' % org_ind,
'stem.%s.' % new_ind)
else:
# backbone.stages.1.conv2.bn._variance
# -> backbone.stage2.0.conv2.bn.running_var
org_stage_ind = k.split('.')[1]
new_stage_ind = str(int(org_stage_ind) + 1)
name = k.replace('stages.%s.' % org_stage_ind,
'stage%s.0.' % new_stage_ind)
name = convert_repvgg(name)
if '.attn.' in k:
name = name.replace('.attn.fc.', '.attn.fc.conv.')
name = convert_bn(name)
name = 'backbone.' + name
new_state_dict[name] = torch.from_numpy(v)
else:
for k, v in model.items():
name = k
if k.startswith('backbone.'):
if '.stem.' in k:
# backbone.stem.conv1.conv.weight
# -> backbone.stem.0.conv.weight
org_ind = k.split('.')[2][-1]
new_ind = str(int(org_ind) - 1)
name = k.replace('.stem.conv%s.' % org_ind,
'.stem.%s.' % new_ind)
else:
# backbone.stages.1.conv2.bn._variance
# -> backbone.stage2.0.conv2.bn.running_var
org_stage_ind = k.split('.')[2]
new_stage_ind = str(int(org_stage_ind) + 1)
name = k.replace('.stages.%s.' % org_stage_ind,
'.stage%s.0.' % new_stage_ind)
name = convert_repvgg(name)
if '.attn.' in k:
name = name.replace('.attn.fc.', '.attn.fc.conv.')
name = convert_bn(name)
elif k.startswith('neck.'):
# fpn_stages
if k.startswith('neck.fpn_stages.'):
# neck.fpn_stages.0.0.conv1.conv.weight
# -> neck.reduce_layers.2.0.conv1.conv.weight
if k.startswith('neck.fpn_stages.0.0.'):
name = k.replace('neck.fpn_stages.0.0.',
'neck.reduce_layers.2.0.')
if '.spp.' in name:
name = name.replace('.spp.conv.', '.spp.conv2.')
# neck.fpn_stages.1.0.conv1.conv.weight
# -> neck.top_down_layers.0.0.conv1.conv.weight
elif k.startswith('neck.fpn_stages.1.0.'):
name = k.replace('neck.fpn_stages.1.0.',
'neck.top_down_layers.0.0.')
elif k.startswith('neck.fpn_stages.2.0.'):
name = k.replace('neck.fpn_stages.2.0.',
'neck.top_down_layers.1.0.')
else:
raise NotImplementedError('Not implemented.')
name = name.replace('.0.convs.', '.0.blocks.')
elif k.startswith('neck.fpn_routes.'):
# neck.fpn_routes.0.conv.weight
# -> neck.upsample_layers.0.0.conv.weight
index = k.split('.')[2]
name = 'neck.upsample_layers.' + index + '.0.' + '.'.join(
k.split('.')[-2:])
name = name.replace('.0.convs.', '.0.blocks.')
elif k.startswith('neck.pan_stages.'):
# neck.pan_stages.0.0.conv1.conv.weight
# -> neck.bottom_up_layers.1.0.conv1.conv.weight
ind = k.split('.')[2]
name = k.replace(
'neck.pan_stages.' + ind, 'neck.bottom_up_layers.' +
('0' if ind == '1' else '1'))
name = name.replace('.0.convs.', '.0.blocks.')
elif k.startswith('neck.pan_routes.'):
# neck.pan_routes.0.conv.weight
# -> neck.downsample_layers.0.conv.weight
ind = k.split('.')[2]
name = k.replace(
'neck.pan_routes.' + ind, 'neck.downsample_layers.' +
('0' if ind == '1' else '1'))
name = name.replace('.0.convs.', '.0.blocks.')
else:
raise NotImplementedError('Not implement.')
name = convert_repvgg(name)
name = convert_bn(name)
elif k.startswith('yolo_head.'):
if ('anchor_points' in k) or ('stride_tensor' in k):
continue
if 'proj_conv' in k:
name = k.replace('yolo_head.proj_conv.',
'bbox_head.head_module.proj_conv.')
else:
for org_key, rep_key in [
[
'yolo_head.stem_cls.',
'bbox_head.head_module.cls_stems.'
],
[
'yolo_head.stem_reg.',
'bbox_head.head_module.reg_stems.'
],
[
'yolo_head.pred_cls.',
'bbox_head.head_module.cls_preds.'
],
[
'yolo_head.pred_reg.',
'bbox_head.head_module.reg_preds.'
]
]:
name = name.replace(org_key, rep_key)
name = name.split('.')
ind = name[3]
name[3] = str(2 - int(ind))
name = '.'.join(name)
name = convert_bn(name)
else:
continue
new_state_dict[name] = torch.from_numpy(v)
data = {'state_dict': new_state_dict}
torch.save(data, dst)
def main():
parser = argparse.ArgumentParser(description='Convert model keys')
parser.add_argument(
'--src',
default='ppyoloe_plus_crn_s_80e_coco.pdparams',
help='src ppyoloe model path')
parser.add_argument(
'--dst', default='mmppyoloe_plus_s.pt', help='save path')
parser.add_argument(
'--imagenet-pretrain',
action='store_true',
default=False,
help='Load model pretrained on imagenet dataset which only '
'have weight for backbone.')
args = parser.parse_args()
convert(args.src, args.dst, args.imagenet_pretrain)
if __name__ == '__main__':
main()
|