File size: 12,691 Bytes
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# Copyright (c) Tencent Inc. All rights reserved.
from typing import List

import torch
import torch.nn as nn
from torch import Tensor
import torch.nn.functional as F
from mmcv.cnn import ConvModule, DepthwiseSeparableConvModule, Linear
from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig
from mmengine.model import BaseModule
from mmyolo.registry import MODELS
from mmyolo.models.layers import CSPLayerWithTwoConv


@MODELS.register_module()
class MaxSigmoidAttnBlock(BaseModule):
    """Max Sigmoid attention block."""
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 guide_channels: int,
                 embed_channels: int,
                 kernel_size: int = 3,
                 padding: int = 1,
                 num_heads: int = 1,
                 use_depthwise: bool = False,
                 with_scale: bool = False,
                 conv_cfg: OptConfigType = None,
                 norm_cfg: ConfigType = dict(type='BN',
                                             momentum=0.03,
                                             eps=0.001),
                 init_cfg: OptMultiConfig = None) -> None:
        super().__init__(init_cfg=init_cfg)
        conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule

        assert (out_channels % num_heads == 0 and
                embed_channels % num_heads == 0), \
            'out_channels and embed_channels should be divisible by num_heads.'
        self.num_heads = num_heads
        self.head_channels = out_channels // num_heads

        self.embed_conv = ConvModule(
            in_channels,
            embed_channels,
            1,
            conv_cfg=conv_cfg,
            norm_cfg=norm_cfg,
            act_cfg=None) if embed_channels != in_channels else None
        self.guide_fc = Linear(guide_channels, embed_channels)
        self.bias = nn.Parameter(torch.zeros(num_heads))
        if with_scale:
            self.scale = nn.Parameter(torch.ones(1, num_heads, 1, 1))
        else:
            self.scale = 1.0

        self.project_conv = conv(in_channels,
                                 out_channels,
                                 kernel_size,
                                 stride=1,
                                 padding=padding,
                                 conv_cfg=conv_cfg,
                                 norm_cfg=norm_cfg,
                                 act_cfg=None)

    def forward(self, x: Tensor, guide: Tensor) -> Tensor:
        """Forward process."""
        B, _, H, W = x.shape

        guide = self.guide_fc(guide)
        guide = guide.reshape(B, -1, self.num_heads, self.head_channels)
        embed = self.embed_conv(x) if self.embed_conv is not None else x
        embed = embed.reshape(B, self.num_heads, self.head_channels, H, W)

        attn_weight = torch.einsum('bmchw,bnmc->bmhwn', embed, guide)
        attn_weight = attn_weight.max(dim=-1)[0]
        attn_weight = attn_weight / (self.head_channels**0.5)
        attn_weight = attn_weight + self.bias[None, :, None, None]
        attn_weight = attn_weight.sigmoid() * self.scale

        x = self.project_conv(x)
        x = x.reshape(B, self.num_heads, -1, H, W)
        x = x * attn_weight.unsqueeze(2)
        x = x.reshape(B, -1, H, W)
        return x


@MODELS.register_module()
class MaxSigmoidCSPLayerWithTwoConv(CSPLayerWithTwoConv):
    """Sigmoid-attention based CSP layer with two convolution layers."""
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            guide_channels: int,
            embed_channels: int,
            num_heads: int = 1,
            expand_ratio: float = 0.5,
            num_blocks: int = 1,
            with_scale: bool = False,
            add_identity: bool = True,  # shortcut
            conv_cfg: OptConfigType = None,
            norm_cfg: ConfigType = dict(type='BN', momentum=0.03, eps=0.001),
            act_cfg: ConfigType = dict(type='SiLU', inplace=True),
            init_cfg: OptMultiConfig = None) -> None:
        super().__init__(in_channels=in_channels,
                         out_channels=out_channels,
                         expand_ratio=expand_ratio,
                         num_blocks=num_blocks,
                         add_identity=add_identity,
                         conv_cfg=conv_cfg,
                         norm_cfg=norm_cfg,
                         act_cfg=act_cfg,
                         init_cfg=init_cfg)

        self.final_conv = ConvModule((3 + num_blocks) * self.mid_channels,
                                     out_channels,
                                     1,
                                     conv_cfg=conv_cfg,
                                     norm_cfg=norm_cfg,
                                     act_cfg=act_cfg)

        self.attn_block = MaxSigmoidAttnBlock(self.mid_channels,
                                              self.mid_channels,
                                              guide_channels=guide_channels,
                                              embed_channels=embed_channels,
                                              num_heads=num_heads,
                                              with_scale=with_scale,
                                              conv_cfg=conv_cfg,
                                              norm_cfg=norm_cfg)

    def forward(self, x: Tensor, guide: Tensor) -> Tensor:
        """Forward process."""
        x_main = self.main_conv(x)
        x_main = list(x_main.split((self.mid_channels, self.mid_channels), 1))
        x_main.extend(blocks(x_main[-1]) for blocks in self.blocks)
        x_main.append(self.attn_block(x_main[-1], guide))
        return self.final_conv(torch.cat(x_main, 1))


@MODELS.register_module()
class ImagePoolingAttentionModule(nn.Module):
    def __init__(self,
                 image_channels: List[int],
                 text_channels: int,
                 embed_channels: int,
                 with_scale: bool = False,
                 num_feats: int = 3,
                 num_heads: int = 8,
                 pool_size: int = 3):
        super().__init__()

        self.text_channels = text_channels
        self.embed_channels = embed_channels
        self.num_heads = num_heads
        self.num_feats = num_feats
        self.head_channels = embed_channels // num_heads
        self.pool_size = pool_size

        if with_scale:
            self.scale = nn.Parameter(torch.tensor([0.]), requires_grad=True)
        else:
            self.scale = 1.0
        self.projections = nn.ModuleList([
            ConvModule(in_channels, embed_channels, 1, act_cfg=None)
            for in_channels in image_channels
        ])
        self.query = nn.Sequential(nn.LayerNorm(text_channels),
                                   Linear(text_channels, embed_channels))
        self.key = nn.Sequential(nn.LayerNorm(embed_channels),
                                 Linear(embed_channels, embed_channels))
        self.value = nn.Sequential(nn.LayerNorm(embed_channels),
                                   Linear(embed_channels, embed_channels))
        self.proj = Linear(embed_channels, text_channels)

        self.image_pools = nn.ModuleList([
            nn.AdaptiveMaxPool2d((pool_size, pool_size))
            for _ in range(num_feats)
        ])

    def forward(self, text_features, image_features):
        B = image_features[0].shape[0]
        assert len(image_features) == self.num_feats
        num_patches = self.pool_size**2
        mlvl_image_features = [
            pool(proj(x)).view(B, -1, num_patches)
            for (x, proj, pool
                 ) in zip(image_features, self.projections, self.image_pools)
        ]
        mlvl_image_features = torch.cat(mlvl_image_features,
                                        dim=-1).transpose(1, 2)
        q = self.query(text_features)
        k = self.key(mlvl_image_features)
        v = self.value(mlvl_image_features)

        q = q.reshape(B, -1, self.num_heads, self.head_channels)
        k = k.reshape(B, -1, self.num_heads, self.head_channels)
        v = v.reshape(B, -1, self.num_heads, self.head_channels)

        attn_weight = torch.einsum('bnmc,bkmc->bmnk', q, k)
        attn_weight = attn_weight / (self.head_channels**0.5)
        attn_weight = F.softmax(attn_weight, dim=-1)

        x = torch.einsum('bmnk,bkmc->bnmc', attn_weight, v)
        x = self.proj(x.reshape(B, -1, self.embed_channels))
        return x * self.scale + text_features


@MODELS.register_module()
class VanillaSigmoidBlock(BaseModule):
    """Sigmoid attention block."""
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 guide_channels: int,
                 embed_channels: int,
                 kernel_size: int = 3,
                 padding: int = 1,
                 num_heads: int = 1,
                 use_depthwise: bool = False,
                 with_scale: bool = False,
                 conv_cfg: OptConfigType = None,
                 norm_cfg: ConfigType = dict(type='BN',
                                             momentum=0.03,
                                             eps=0.001),
                 init_cfg: OptMultiConfig = None) -> None:
        super().__init__(init_cfg=init_cfg)
        conv = DepthwiseSeparableConvModule if use_depthwise else ConvModule

        assert (out_channels % num_heads == 0 and
                embed_channels % num_heads == 0), \
            'out_channels and embed_channels should be divisible by num_heads.'
        self.num_heads = num_heads
        self.head_channels = out_channels // num_heads

        self.project_conv = conv(in_channels,
                                 out_channels,
                                 kernel_size,
                                 stride=1,
                                 padding=padding,
                                 conv_cfg=conv_cfg,
                                 norm_cfg=norm_cfg,
                                 act_cfg=None)

    def forward(self, x: Tensor, guide: Tensor) -> Tensor:
        """Forward process."""
        x = self.project_conv(x)
        x = x * x.sigmoid()
        return x


@MODELS.register_module()
class EfficientCSPLayerWithTwoConv(CSPLayerWithTwoConv):
    """Sigmoid-attention based CSP layer with two convolution layers."""
    def __init__(
            self,
            in_channels: int,
            out_channels: int,
            guide_channels: int,
            embed_channels: int,
            num_heads: int = 1,
            expand_ratio: float = 0.5,
            num_blocks: int = 1,
            with_scale: bool = False,
            add_identity: bool = True,  # shortcut
            conv_cfg: OptConfigType = None,
            norm_cfg: ConfigType = dict(type='BN', momentum=0.03, eps=0.001),
            act_cfg: ConfigType = dict(type='SiLU', inplace=True),
            init_cfg: OptMultiConfig = None) -> None:
        super().__init__(in_channels=in_channels,
                         out_channels=out_channels,
                         expand_ratio=expand_ratio,
                         num_blocks=num_blocks,
                         add_identity=add_identity,
                         conv_cfg=conv_cfg,
                         norm_cfg=norm_cfg,
                         act_cfg=act_cfg,
                         init_cfg=init_cfg)

        self.final_conv = ConvModule((3 + num_blocks) * self.mid_channels,
                                     out_channels,
                                     1,
                                     conv_cfg=conv_cfg,
                                     norm_cfg=norm_cfg,
                                     act_cfg=act_cfg)

        self.attn_block = VanillaSigmoidBlock(self.mid_channels,
                                              self.mid_channels,
                                              guide_channels=guide_channels,
                                              embed_channels=embed_channels,
                                              num_heads=num_heads,
                                              with_scale=with_scale,
                                              conv_cfg=conv_cfg,
                                              norm_cfg=norm_cfg)

    def forward(self, x: Tensor, guide: Tensor) -> Tensor:
        """Forward process."""
        x_main = self.main_conv(x)
        x_main = list(x_main.split((self.mid_channels, self.mid_channels), 1))
        x_main.extend(blocks(x_main[-1]) for blocks in self.blocks)
        x_main.append(self.attn_block(x_main[-1], guide))
        return self.final_conv(torch.cat(x_main, 1))