File size: 9,251 Bytes
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# Copyright (c) OpenMMLab. All rights reserved.
"""This script is in the experimental verification stage and cannot be
guaranteed to be completely correct. Currently Grad-based CAM and Grad-free CAM
are supported.

The target detection task is different from the classification task. It not
only includes the AM map of the category, but also includes information such as
bbox and mask, so this script is named bboxam.
"""

import argparse
import os.path
import warnings
from functools import partial

import cv2
import mmcv
from mmengine import Config, DictAction, MessageHub
from mmengine.utils import ProgressBar

try:
    from pytorch_grad_cam import AblationCAM, EigenCAM
except ImportError:
    raise ImportError('Please run `pip install "grad-cam"` to install '
                      'pytorch_grad_cam package.')

from mmyolo.utils.boxam_utils import (BoxAMDetectorVisualizer,
                                      BoxAMDetectorWrapper, DetAblationLayer,
                                      DetBoxScoreTarget, GradCAM,
                                      GradCAMPlusPlus, reshape_transform)
from mmyolo.utils.misc import get_file_list

GRAD_FREE_METHOD_MAP = {
    'ablationcam': AblationCAM,
    'eigencam': EigenCAM,
    # 'scorecam': ScoreCAM, # consumes too much memory
}

GRAD_BASED_METHOD_MAP = {'gradcam': GradCAM, 'gradcam++': GradCAMPlusPlus}

ALL_SUPPORT_METHODS = list(GRAD_FREE_METHOD_MAP.keys()
                           | GRAD_BASED_METHOD_MAP.keys())

IGNORE_LOSS_PARAMS = {
    'yolov5': ['loss_obj'],
    'yolov6': ['loss_cls'],
    'yolox': ['loss_obj'],
    'rtmdet': ['loss_cls'],
    'yolov7': ['loss_obj'],
    'yolov8': ['loss_cls'],
    'ppyoloe': ['loss_cls'],
}

# This parameter is required in some algorithms
# for calculating Loss
message_hub = MessageHub.get_current_instance()
message_hub.runtime_info['epoch'] = 0


def parse_args():
    parser = argparse.ArgumentParser(description='Visualize Box AM')
    parser.add_argument(
        'img', help='Image path, include image file, dir and URL.')
    parser.add_argument('config', help='Config file')
    parser.add_argument('checkpoint', help='Checkpoint file')
    parser.add_argument(
        '--method',
        default='gradcam',
        choices=ALL_SUPPORT_METHODS,
        help='Type of method to use, supports '
        f'{", ".join(ALL_SUPPORT_METHODS)}.')
    parser.add_argument(
        '--target-layers',
        default=['neck.out_layers[2]'],
        nargs='+',
        type=str,
        help='The target layers to get Box AM, if not set, the tool will '
        'specify the neck.out_layers[2]')
    parser.add_argument(
        '--out-dir', default='./output', help='Path to output file')
    parser.add_argument(
        '--show', action='store_true', help='Show the CAM results')
    parser.add_argument(
        '--device', default='cuda:0', help='Device used for inference')
    parser.add_argument(
        '--score-thr', type=float, default=0.3, help='Bbox score threshold')
    parser.add_argument(
        '--topk',
        type=int,
        default=-1,
        help='Select topk predict resutls to show. -1 are mean all.')
    parser.add_argument(
        '--max-shape',
        nargs='+',
        type=int,
        default=-1,
        help='max shapes. Its purpose is to save GPU memory. '
        'The activation map is scaled and then evaluated. '
        'If set to -1, it means no scaling.')
    parser.add_argument(
        '--preview-model',
        default=False,
        action='store_true',
        help='To preview all the model layers')
    parser.add_argument(
        '--norm-in-bbox', action='store_true', help='Norm in bbox of am image')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    # Only used by AblationCAM
    parser.add_argument(
        '--batch-size',
        type=int,
        default=1,
        help='batch of inference of AblationCAM')
    parser.add_argument(
        '--ratio-channels-to-ablate',
        type=int,
        default=0.5,
        help='Making it much faster of AblationCAM. '
        'The parameter controls how many channels should be ablated')

    args = parser.parse_args()
    return args


def init_detector_and_visualizer(args, cfg):
    max_shape = args.max_shape
    if not isinstance(max_shape, list):
        max_shape = [args.max_shape]
    assert len(max_shape) == 1 or len(max_shape) == 2

    model_wrapper = BoxAMDetectorWrapper(
        cfg, args.checkpoint, args.score_thr, device=args.device)

    if args.preview_model:
        print(model_wrapper.detector)
        print('\n Please remove `--preview-model` to get the BoxAM.')
        return None, None

    target_layers = []
    for target_layer in args.target_layers:
        try:
            target_layers.append(
                eval(f'model_wrapper.detector.{target_layer}'))
        except Exception as e:
            print(model_wrapper.detector)
            raise RuntimeError('layer does not exist', e)

    ablationcam_extra_params = {
        'batch_size': args.batch_size,
        'ablation_layer': DetAblationLayer(),
        'ratio_channels_to_ablate': args.ratio_channels_to_ablate
    }

    if args.method in GRAD_BASED_METHOD_MAP:
        method_class = GRAD_BASED_METHOD_MAP[args.method]
        is_need_grad = True
    else:
        method_class = GRAD_FREE_METHOD_MAP[args.method]
        is_need_grad = False

    boxam_detector_visualizer = BoxAMDetectorVisualizer(
        method_class,
        model_wrapper,
        target_layers,
        reshape_transform=partial(
            reshape_transform, max_shape=max_shape, is_need_grad=is_need_grad),
        is_need_grad=is_need_grad,
        extra_params=ablationcam_extra_params)
    return model_wrapper, boxam_detector_visualizer


def main():
    args = parse_args()

    # hard code
    ignore_loss_params = None
    for param_keys in IGNORE_LOSS_PARAMS:
        if param_keys in args.config:
            print(f'The algorithm currently used is {param_keys}')
            ignore_loss_params = IGNORE_LOSS_PARAMS[param_keys]
            break

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    if not os.path.exists(args.out_dir) and not args.show:
        os.mkdir(args.out_dir)

    model_wrapper, boxam_detector_visualizer = init_detector_and_visualizer(
        args, cfg)

    # get file list
    image_list, source_type = get_file_list(args.img)

    progress_bar = ProgressBar(len(image_list))

    for image_path in image_list:
        image = cv2.imread(image_path)
        model_wrapper.set_input_data(image)

        # forward detection results
        result = model_wrapper()[0]

        pred_instances = result.pred_instances
        # Get candidate predict info with score threshold
        pred_instances = pred_instances[pred_instances.scores > args.score_thr]

        if len(pred_instances) == 0:
            warnings.warn('empty detection results! skip this')
            continue

        if args.topk > 0:
            pred_instances = pred_instances[:args.topk]

        targets = [
            DetBoxScoreTarget(
                pred_instances,
                device=args.device,
                ignore_loss_params=ignore_loss_params)
        ]

        if args.method in GRAD_BASED_METHOD_MAP:
            model_wrapper.need_loss(True)
            model_wrapper.set_input_data(image, pred_instances)
            boxam_detector_visualizer.switch_activations_and_grads(
                model_wrapper)

        # get box am image
        grayscale_boxam = boxam_detector_visualizer(image, targets=targets)

        # draw cam on image
        pred_instances = pred_instances.numpy()
        image_with_bounding_boxes = boxam_detector_visualizer.show_am(
            image,
            pred_instances,
            grayscale_boxam,
            with_norm_in_bboxes=args.norm_in_bbox)

        if source_type['is_dir']:
            filename = os.path.relpath(image_path, args.img).replace('/', '_')
        else:
            filename = os.path.basename(image_path)
        out_file = None if args.show else os.path.join(args.out_dir, filename)

        if out_file:
            mmcv.imwrite(image_with_bounding_boxes, out_file)
        else:
            cv2.namedWindow(filename, 0)
            cv2.imshow(filename, image_with_bounding_boxes)
            cv2.waitKey(0)

        # switch
        if args.method in GRAD_BASED_METHOD_MAP:
            model_wrapper.need_loss(False)
            boxam_detector_visualizer.switch_activations_and_grads(
                model_wrapper)

        progress_bar.update()

    if not args.show:
        print(f'All done!'
              f'\nResults have been saved at {os.path.abspath(args.out_dir)}')


if __name__ == '__main__':
    main()