File size: 29,664 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "x7seefPduh36"
},
"source": [
"<div align=\"center\">\n",
" <img width=\"600\" src=\"https://github.com/open-mmlab/mmyolo/raw/main/resources/mmyolo-logo.png\"/>\n",
" <div> </div>\n",
" <div align=\"center\">\n",
" <b><font size=\"5\">OpenMMLab website</font></b>\n",
" <sup>\n",
" <a href=\"https://openmmlab.com\">\n",
" <i><font size=\"4\">HOT</font></i>\n",
" </a>\n",
" </sup>\n",
" \n",
" <b><font size=\"5\">OpenMMLab platform</font></b>\n",
" <sup>\n",
" <a href=\"https://platform.openmmlab.com\">\n",
" <i><font size=\"4\">TRY IT OUT</font></i>\n",
" </a>\n",
" </sup>\n",
" </div>\n",
" <div> </div>\n",
"\n",
"<a href=\"https://colab.research.google.com/drive/1ogJ7MQ6DTeKc6mN2an9GvuCjkH3RREXk?usp=sharing\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"></a>\n",
"\n",
"[![PyPI](https://img.shields.io/pypi/v/mmyolo)](https://pypi.org/project/mmyolo)\n",
"[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmyolo.readthedocs.io/en/latest/)\n",
"[![deploy](https://github.com/open-mmlab/mmyolo/workflows/deploy/badge.svg)](https://github.com/open-mmlab/mmyolo/actions)\n",
"[![codecov](https://codecov.io/gh/open-mmlab/mmyolo/branch/main/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmyolo)\n",
"[![license](https://img.shields.io/github/license/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/blob/main/LICENSE)\n",
"[![open issues](https://isitmaintained.com/badge/open/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/issues)\n",
"[![issue resolution](https://isitmaintained.com/badge/resolution/open-mmlab/mmyolo.svg)](https://github.com/open-mmlab/mmyolo/issues)\n",
"\n",
"[📘Documentation](https://mmyolo.readthedocs.io/en/latest/) |\n",
"[🛠️Installation](https://mmyolo.readthedocs.io/en/latest/get_started/installation.html) |\n",
"[👀Model Zoo](https://mmyolo.readthedocs.io/en/latest/model_zoo.html) |\n",
"[🆕Update News](https://mmyolo.readthedocs.io/en/latest/notes/changelog.html) |\n",
"[🤔Reporting Issues](https://github.com/open-mmlab/mmyolo/issues/new/choose)\n",
"\n",
"</div>\n",
"\n",
"<div align=\"center\">\n",
" <a href=\"https://openmmlab.medium.com/\" style=\"text-decoration:none;\">\n",
" <img src=\"https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png\" width=\"3%\" alt=\"\" /></a>\n",
" <img src=\"https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png\" width=\"3%\" alt=\"\" />\n",
" <a href=\"https://discord.com/channels/1037617289144569886/1046608014234370059\" style=\"text-decoration:none;\">\n",
" <img src=\"https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png\" width=\"3%\" alt=\"\" /></a>\n",
" <img src=\"https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png\" width=\"3%\" alt=\"\" />\n",
" <a href=\"https://twitter.com/OpenMMLab\" style=\"text-decoration:none;\">\n",
" <img src=\"https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png\" width=\"3%\" alt=\"\" /></a>\n",
" <img src=\"https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png\" width=\"3%\" alt=\"\" />\n",
" <a href=\"https://www.youtube.com/openmmlab\" style=\"text-decoration:none;\">\n",
" <img src=\"https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png\" width=\"3%\" alt=\"\" /></a>\n",
" <img src=\"https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png\" width=\"3%\" alt=\"\" />\n",
" <a href=\"https://space.bilibili.com/1293512903\" style=\"text-decoration:none;\">\n",
" <img src=\"https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png\" width=\"3%\" alt=\"\" /></a>\n",
" <img src=\"https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png\" width=\"3%\" alt=\"\" />\n",
" <a href=\"https://www.zhihu.com/people/openmmlab\" style=\"text-decoration:none;\">\n",
" <img src=\"https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png\" width=\"3%\" alt=\"\" /></a>\n",
"</div>"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "V6W8P5XEJGoc"
},
"source": [
"# 15 minutes to get started with MMYOLO instance segmentation\n",
"\n",
"Instance segmentation is a task in computer vision that aims to segment each object in an image and assign each object a unique identifier.\n",
"\n",
"Unlike semantic segmentation, instance segmentation not only segments out different categories in an image, but also separates different instances of the same category.\n",
"\n",
"<div align=center>\n",
"<img src=\"https://github.com/open-mmlab/mmyolo/assets/87774050/6fd6316f-d78d-48a5-a413-86e7a74583fd\" alt=\"Instance Segmentation\" width=\"100%\"/>\n",
"</div>\n",
"\n",
"Taking the downloadable balloon dataset as an example, I will guide you through a 15-minute easy introduction to MMYOLO instance segmentation. The entire process includes the following steps:\n",
"\n",
"- [Installation](#installation)\n",
"- [Dataset](#dataset)\n",
"- [Config](#config)\n",
"- [Training](#training)\n",
"- [Testing](#testing)\n",
"- [EasyDeploy](#easydeploy-deployment)\n",
"\n",
"In this tutorial, we will use YOLOv5-s as an example. For the demo configuration of the balloon dataset with other YOLO series algorithms, please refer to the corresponding algorithm configuration folder."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "Ae5SqsA7wYGQ"
},
"source": [
"## Installation\n",
"\n",
"Assuming you've already installed Conda in advance, then install PyTorch using the following commands."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "XVLRaEIzwW-6",
"outputId": "901b5db6-b1d7-4830-e746-485ee76d6648"
},
"outputs": [],
"source": [
"# -----------------------------------------------------------------------------------------\n",
"# If you are using colab, you can skip this cell for PyTorch is pre-installed on the colab.\n",
"# -----------------------------------------------------------------------------------------\n",
"!python -V\n",
"# Check nvcc version\n",
"!nvcc -V\n",
"# Check GCC version\n",
"!gcc --version\n",
"# Create a new Conda environment\n",
"%conda create -n mmyolo python=3.8 -y\n",
"%conda activate mmyolo\n",
"# If you have GPU\n",
"%conda install pytorch torchvision -c pytorch\n",
"# If you only have CPU\n",
"# %conda install pytorch torchvision cpuonly -c pytorch"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Check PyTorch version\n",
"import torch\n",
"print(torch.__version__)\n",
"print(torch.cuda.is_available())"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Install MMYOLO and dependency libraries using the following commands.\n",
"For details about how to configure the environment, see [Installation and verification](https://mmyolo.readthedocs.io/en/latest/get_started/installation.html).\n",
"```{note}\n",
"Note: Since this repo uses OpenMMLab 2.0, it is better to create a new conda virtual environment to prevent conflicts with the repo installed in OpenMMLab 1.0.\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "-qATUuntwmfD",
"outputId": "24be577b-efce-46f2-8b2f-a65d02824467"
},
"outputs": [],
"source": [
"!git clone https://github.com/open-mmlab/mmyolo.git\n",
"%cd mmyolo\n",
"%pip install -U openmim\n",
"!mim install -r requirements/mminstall.txt\n",
"# Install albumentations\n",
"!mim install -r requirements/albu.txt\n",
"# Install MMYOLO\n",
"!mim install -v -e .\n",
"# \"-v\" means verbose, or more output\n",
"# \"-e\" means installing a project in editable mode,\n",
"# thus any local modifications made to the code will take effect without reinstallation."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Dataset\n",
"\n",
"The Balloon dataset is a single-class dataset that consists of 74 images and includes annotated information required for training. Here is an example image from the dataset:\n",
"\n",
"<div align=center>\n",
"<img src=\"https://user-images.githubusercontent.com/87774050/236993643-f581b087-9231-48a5-810b-97a5f31abe63.png\" alt=\"balloon dataset\"/>\n",
"</div>\n",
"\n",
"You can download and use it directly by the following command:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "gMQXwWuIw3ef",
"outputId": "c8efeac7-5b0c-4342-b5af-d3e790e358c3"
},
"outputs": [],
"source": [
"!python tools/misc/download_dataset.py --dataset-name balloon --save-dir ./data/balloon --unzip --delete\n",
"!python ./tools/dataset_converters/balloon2coco.py"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "covQskXXw2ul"
},
"source": [
"The data for the MMYOLO project is located in the MMYOLO project directory. The `train.json` and `val.json` files store the annotations in COCO format, while the `data/balloon/train` and `data/balloon/val` directories contain all the images for the dataset.\n",
"\n",
"## Config\n",
"\n",
"Taking YOLOv5 algorithm as an example, considering the limited GPU memory of users, we need to modify some default training parameters to make them run smoothly. The key parameters to be modified are as follows:\n",
"\n",
"- YOLOv5 is an Anchor-Based algorithm, and different datasets need to calculate suitable anchors adaptively.\n",
"- The default config uses 8 GPUs with a batch size of 16 per GPU. Now change it to a single GPU with a batch size of 12.\n",
"- In principle, the learning rate should be linearly scaled accordingly when the batch size is changed, but actual measurements have found that this is not necessary.\n",
"\n",
"To perform the specific operation, create a new configuration file named `yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py` in the `configs/yolov5/ins_seg` folder. For convenience, we have already provided this configuration file. Copy the following contents into the configuration file.\n",
"\n",
"```python\n",
"_base_ = './yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance.py' # noqa\n",
"\n",
"data_root = 'data/balloon/' # dataset root\n",
"# Training set annotation file of json path\n",
"train_ann_file = 'train.json'\n",
"train_data_prefix = 'train/' # Dataset prefix\n",
"# Validation set annotation file of json path\n",
"val_ann_file = 'val.json'\n",
"val_data_prefix = 'val/'\n",
"metainfo = {\n",
" 'classes': ('balloon', ), # dataset category name\n",
" 'palette': [\n",
" (220, 20, 60),\n",
" ]\n",
"}\n",
"num_classes = 1\n",
"# Set batch size to 4\n",
"train_batch_size_per_gpu = 4\n",
"# dataloader num workers\n",
"train_num_workers = 2\n",
"log_interval = 1\n",
"#####################\n",
"train_dataloader = dict(\n",
" batch_size=train_batch_size_per_gpu,\n",
" num_workers=train_num_workers,\n",
" dataset=dict(\n",
" data_root=data_root,\n",
" metainfo=metainfo,\n",
" data_prefix=dict(img=train_data_prefix),\n",
" ann_file=train_ann_file))\n",
"val_dataloader = dict(\n",
" dataset=dict(\n",
" data_root=data_root,\n",
" metainfo=metainfo,\n",
" data_prefix=dict(img=val_data_prefix),\n",
" ann_file=val_ann_file))\n",
"test_dataloader = val_dataloader\n",
"val_evaluator = dict(ann_file=data_root + val_ann_file)\n",
"test_evaluator = val_evaluator\n",
"default_hooks = dict(logger=dict(interval=log_interval))\n",
"#####################\n",
"\n",
"model = dict(bbox_head=dict(head_module=dict(num_classes=num_classes)))\n",
"```\n",
"\n",
"The above configuration inherits from `yolov5_ins_s-v61_syncbn_fast_8xb16-300e_coco_instance.py` and updates configurations such as `data_root`, `metainfo`, `train_dataloader`, `val_dataloader`, `num_classes`, etc., based on the characteristics of the balloon dataset.\n",
"\n",
"## Training"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!python tools/train.py configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "TQ0h6sv_rJxq"
},
"source": [
"After running the training command mentioned above, the folder `work_dirs/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance` will be automatically generated. The weight files and the training configuration file for this session will be saved in this folder. On a lower-end GPU like the GTX 1660, the entire training process will take approximately 30 minutes.\n",
"\n",
"<div align=center>\n",
"<img src=\"https://user-images.githubusercontent.com/87774050/236995027-00a16a9e-2a2d-44cc-be8a-e2c8a36ff77f.png\" alt=\"image\"/>\n",
"</div>\n",
"\n",
"The performance on `val.json` is as follows:\n",
"\n",
"```text\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.330\n",
" Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.509\n",
" Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.317\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.103\n",
" Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.417\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.150\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.396\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.454\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.317\n",
" Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.525\n",
"```\n",
"\n",
"The above performance is obtained by printing using the COCO API, where -1 indicates the absence of objects of that scale.\n",
"\n",
"### Some Notes\n",
"\n",
"Two key warnings are printed during training:\n",
"\n",
"- You are using `YOLOv5Head` with num_classes == 1. The loss_cls will be 0. This is a normal phenomenon.\n",
"\n",
"The warning is because the `num_classes` currently trained is 1, the loss of the classification branch is always 0 according to the community of the YOLOv5 algorithm, which is a normal phenomenon.\n",
"\n",
"### Training is resumed after the interruption\n",
"\n",
"If you stop training, you can add `--resume` to the end of the training command and the program will automatically resume training with the latest weights file from `work_dirs`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!python tools/train.py configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py --resume"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "3sJxvQoUrMhX"
},
"source": [
"### Save GPU memory strategy\n",
"\n",
"The above config requires about 3G RAM, so if you don't have enough, consider turning on mixed-precision training"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!python tools/train.py configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py --amp"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "jVJdyHTxrQ9a"
},
"source": [
"### Training visualization\n",
"\n",
"MMYOLO currently supports local, TensorBoard, WandB and other back-end visualization. The default is to use local visualization, and you can switch to WandB and other real-time visualization of various indicators in the training process.\n",
"\n",
"#### 1 WandB\n",
"\n",
"WandB visualization need registered in website, and in the https://wandb.ai/settings for wandb API Keys.\n",
"\n",
"<div align=center>\n",
"<img src=\"https://cdn.vansin.top/img/20220913212628.png\" alt=\"image\"/>\n",
"</div>"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install wandb\n",
"# After running wandb login, enter the API Keys obtained above, and the login is successful.\n",
"!wandb login"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "Yu0_4YYRrbyY"
},
"source": [
"Add the wandb config at the end of config file we just created: `configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py`.\n",
"\n",
"```python\n",
"visualizer = dict(vis_backends = [dict(type='LocalVisBackend'), dict(type='WandbVisBackend')])\n",
"```\n",
"\n",
"Running the training command and you will see the loss, learning rate, and coco/bbox_mAP visualizations in the link."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!python tools/train.py configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "f_DyzfDIzwMa"
},
"source": [
"<div align=center>\n",
"<img src=\"https://user-images.githubusercontent.com/17425982/222131114-30a79285-56bc-427d-a38d-8d6a6982ad60.png\" alt=\"image\"/>\n",
"</div>\n",
"<div align=center>\n",
"<img src=\"https://user-images.githubusercontent.com/17425982/222132585-4b4962f1-211b-46f7-86b3-7534fc52a1b4.png\" alt=\"image\"/>\n",
"</div>\n",
"\n",
"#### 2 Tensorboard\n",
"\n",
"Install Tensorboard using the following command."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "gHkGlii3n29Q"
},
"outputs": [],
"source": [
"%pip install tensorboard"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "bE-nx9TY1P-M"
},
"source": [
"Add the `tensorboard` config at the end of config file we just created: `configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py`.\n",
"\n",
"```python\n",
"visualizer = dict(vis_backends=[dict(type='LocalVisBackend'),dict(type='TensorboardVisBackend')])\n",
"```\n",
"\n",
"After re-running the training command, Tensorboard file will be generated in the visualization folder `work_dirs/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance/{timestamp}/vis_data`.\n",
"We can use Tensorboard to view the loss, learning rate, and coco/bbox_mAP visualizations from a web link by running the following command:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"cellView": "form",
"id": "g8fZgokho5CE"
},
"outputs": [],
"source": [
"!tensorboard --logdir=work_dirs/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "GUZ7MPoaro-o"
},
"source": [
"## Testing"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "VYmxtE0GunTB",
"outputId": "f440807c-1931-4810-b76d-617f73fde227"
},
"outputs": [],
"source": [
"!python tools/test.py configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py work_dirs/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance best_coco_bbox_mAP_epoch_300.pth --show-dir show_results"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"id": "_cFocUqN0BCb"
},
"source": [
"Run the above test command, you can not only get the AP performance printed in the **Training** section, You can also automatically save the result images to the `work_dirs/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance/{timestamp}/show_results` folder. Below is one of the result images, the left image is the actual annotation, and the right image is the inference result of the model.\n",
"\n",
"<div align=center>\n",
"<img src=\"https://user-images.githubusercontent.com/87774050/236996421-46cfd38c-0827-4251-8216-408dfa9e03dd.jpg\" alt=\"result_img\"/>\n",
"</div>\n",
"\n",
"You can also visualize model inference results in a browser window if you use `WandbVisBackend` or `TensorboardVisBackend`.\n",
"\n",
"## Feature map visualization\n",
"\n",
"MMYOLO provides visualization scripts for feature map to analyze the current model training. Please refer to [Feature Map Visualization](../recommended_topics/visualization.md)\n",
"\n",
"Due to the bias of direct visualization of `test_pipeline`, we need to modify the `test_pipeline` of `configs/yolov5/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py`\n",
"\n",
"```python\n",
"test_pipeline = [\n",
" dict(\n",
" type='LoadImageFromFile',\n",
" file_client_args=_base_.file_client_args),\n",
" dict(type='YOLOv5KeepRatioResize', scale=img_scale),\n",
" dict(\n",
" type='LetterResize',\n",
" scale=img_scale,\n",
" allow_scale_up=False,\n",
" pad_val=dict(img=114)),\n",
" dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),\n",
" dict(\n",
" type='mmdet.PackDetInputs',\n",
" meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',\n",
" 'scale_factor', 'pad_param'))\n",
"]\n",
"```\n",
"\n",
"to the following config:\n",
"\n",
"```python\n",
"test_pipeline = [\n",
" dict(\n",
" type='LoadImageFromFile',\n",
" file_client_args=_base_.file_client_args),\n",
" dict(type='mmdet.Resize', scale=img_scale, keep_ratio=False), # modify the LetterResize to mmdet.Resize\n",
" dict(type='LoadAnnotations', with_bbox=True, _scope_='mmdet'),\n",
" dict(\n",
" type='mmdet.PackDetInputs',\n",
" meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',\n",
" 'scale_factor'))\n",
"]\n",
"```\n",
"\n",
"Let's choose the `data/balloon/train/3927754171_9011487133_b.jpg` image as an example to visualize the output feature maps of YOLOv5 backbone and neck layers.\n",
"\n",
"**1. Visualize the three channels of YOLOv5 backbone**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!python demo/featmap_vis_demo.py data/balloon/train/3927754171_9011487133_b.jpg onfigs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py work_dirs/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance/best_coco_bbox_mAP_epoch_300.pth --target-layers backbone --channel-reduction squeeze_mean"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"<div align=center>\n",
"<img src=\"https://user-images.githubusercontent.com/87774050/236997582-233e292f-5e96-4e44-9e92-9e0787f302fc.jpg\" width=\"800\" alt=\"image\"/>\n",
"</div>\n",
"\n",
"The result will be saved to the output folder in current path. Three output feature maps plotted in the above figure correspond to small, medium and large output feature maps.\n",
"\n",
"**2. Visualize the three channels of YOLOv5 neck**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!python demo/featmap_vis_demo.py data/balloon/train/3927754171_9011487133_b.jpg \\\n",
" configs/yolov5/ins_seg/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance.py \\\n",
" work_dirs/yolov5_ins_s-v61_syncbn_fast_8xb16-300e_balloon_instance/best_coco_bbox_mAP_epoch_300.pth \\\n",
" --target-layers neck \\\n",
" --channel-reduction squeeze_mean"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"<div align=center>\n",
"<img src=\"https://user-images.githubusercontent.com/87774050/236997860-719d2e18-7767-4129-a072-b21c97a5502a.jpg\" width=\"800\" alt=\"image\"/>\n",
"</div>\n",
"\n",
"**3. Grad-Based CAM visualization**\n",
"TODO"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## EasyDeploy deployment\n",
"TODO\n",
"\n",
"This completes the transformation deployment of the trained model and checks the inference results. This is the end of the tutorial.\n",
"\n",
"If you encounter problems during training or testing, please check the [common troubleshooting steps](https://mmyolo.readthedocs.io/en/dev/recommended_topics/troubleshooting_steps.html) first and feel free to open an [issue](https://github.com/open-mmlab/mmyolo/issues/new/choose) if you still can't solve it."
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"provenance": [],
"toc_visible": true
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|