File size: 11,493 Bytes
186701e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
# Copyright (c) Tencent Inc. All rights reserved.
import argparse
import logging
import os
import os.path as osp
from functools import partial
import mmengine
import torch.multiprocessing as mp
from torch.multiprocessing import Process, set_start_method
from mmdeploy.apis import (create_calib_input_data, extract_model,
get_predefined_partition_cfg, torch2onnx,
torch2torchscript, visualize_model)
from mmdeploy.apis.core import PIPELINE_MANAGER
from mmdeploy.apis.utils import to_backend
from mmdeploy.backend.sdk.export_info import export2SDK
from mmdeploy.utils import (IR, Backend, get_backend, get_calib_filename,
get_ir_config, get_partition_config,
get_root_logger, load_config, target_wrapper)
def parse_args():
parser = argparse.ArgumentParser(description='Export model to backends.')
parser.add_argument('deploy_cfg', help='deploy config path')
parser.add_argument('model_cfg', help='model config path')
parser.add_argument('checkpoint', help='model checkpoint path')
parser.add_argument('img', help='image used to convert model model')
parser.add_argument(
'--test-img',
default=None,
type=str,
nargs='+',
help='image used to test model')
parser.add_argument(
'--work-dir',
default=os.getcwd(),
help='the dir to save logs and models')
parser.add_argument(
'--calib-dataset-cfg',
help='dataset config path used to calibrate in int8 mode. If not \
specified, it will use "val" dataset in model config instead.',
default=None)
parser.add_argument(
'--device', help='device used for conversion', default='cpu')
parser.add_argument(
'--log-level',
help='set log level',
default='INFO',
choices=list(logging._nameToLevel.keys()))
parser.add_argument(
'--show', action='store_true', help='Show detection outputs')
parser.add_argument(
'--dump-info', action='store_true', help='Output information for SDK')
parser.add_argument(
'--quant-image-dir',
default=None,
help='Image directory for quantize model.')
parser.add_argument(
'--quant', action='store_true', help='Quantize model to low bit.')
parser.add_argument(
'--uri',
default='192.168.1.1:60000',
help='Remote ipv4:port or ipv6:port for inference on edge device.')
args = parser.parse_args()
return args
def create_process(name, target, args, kwargs, ret_value=None):
logger = get_root_logger()
logger.info(f'{name} start.')
log_level = logger.level
wrap_func = partial(target_wrapper, target, log_level, ret_value)
process = Process(target=wrap_func, args=args, kwargs=kwargs)
process.start()
process.join()
if ret_value is not None:
if ret_value.value != 0:
logger.error(f'{name} failed.')
exit(1)
else:
logger.info(f'{name} success.')
def torch2ir(ir_type: IR):
"""Return the conversion function from torch to the intermediate
representation.
Args:
ir_type (IR): The type of the intermediate representation.
"""
if ir_type == IR.ONNX:
return torch2onnx
elif ir_type == IR.TORCHSCRIPT:
return torch2torchscript
else:
raise KeyError(f'Unexpected IR type {ir_type}')
def main():
args = parse_args()
set_start_method('spawn', force=True)
logger = get_root_logger()
log_level = logging.getLevelName(args.log_level)
logger.setLevel(log_level)
pipeline_funcs = [
torch2onnx, torch2torchscript, extract_model, create_calib_input_data
]
PIPELINE_MANAGER.enable_multiprocess(True, pipeline_funcs)
PIPELINE_MANAGER.set_log_level(log_level, pipeline_funcs)
deploy_cfg_path = args.deploy_cfg
model_cfg_path = args.model_cfg
checkpoint_path = args.checkpoint
quant = args.quant
quant_image_dir = args.quant_image_dir
# load deploy_cfg
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
# create work_dir if not
mmengine.mkdir_or_exist(osp.abspath(args.work_dir))
if args.dump_info:
export2SDK(
deploy_cfg,
model_cfg,
args.work_dir,
pth=checkpoint_path,
device=args.device)
ret_value = mp.Value('d', 0, lock=False)
# convert to IR
ir_config = get_ir_config(deploy_cfg)
ir_save_file = ir_config['save_file']
ir_type = IR.get(ir_config['type'])
torch2ir(ir_type)(
args.img,
args.work_dir,
ir_save_file,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
device=args.device)
# convert backend
ir_files = [osp.join(args.work_dir, ir_save_file)]
# partition model
partition_cfgs = get_partition_config(deploy_cfg)
if partition_cfgs is not None:
if 'partition_cfg' in partition_cfgs:
partition_cfgs = partition_cfgs.get('partition_cfg', None)
else:
assert 'type' in partition_cfgs
partition_cfgs = get_predefined_partition_cfg(
deploy_cfg, partition_cfgs['type'])
origin_ir_file = ir_files[0]
ir_files = []
for partition_cfg in partition_cfgs:
save_file = partition_cfg['save_file']
save_path = osp.join(args.work_dir, save_file)
start = partition_cfg['start']
end = partition_cfg['end']
dynamic_axes = partition_cfg.get('dynamic_axes', None)
extract_model(
origin_ir_file,
start,
end,
dynamic_axes=dynamic_axes,
save_file=save_path)
ir_files.append(save_path)
# calib data
calib_filename = get_calib_filename(deploy_cfg)
if calib_filename is not None:
calib_path = osp.join(args.work_dir, calib_filename)
create_calib_input_data(
calib_path,
deploy_cfg_path,
model_cfg_path,
checkpoint_path,
dataset_cfg=args.calib_dataset_cfg,
dataset_type='val',
device=args.device)
backend_files = ir_files
# convert backend
backend = get_backend(deploy_cfg)
# preprocess deploy_cfg
if backend == Backend.RKNN:
# TODO: Add this to task_processor in the future
import tempfile
from mmdeploy.utils import (get_common_config, get_normalization,
get_quantization_config,
get_rknn_quantization)
quantization_cfg = get_quantization_config(deploy_cfg)
common_params = get_common_config(deploy_cfg)
if get_rknn_quantization(deploy_cfg) is True:
transform = get_normalization(model_cfg)
common_params.update(
dict(
mean_values=[transform['mean']],
std_values=[transform['std']]))
dataset_file = tempfile.NamedTemporaryFile(suffix='.txt').name
with open(dataset_file, 'w') as f:
f.writelines([osp.abspath(args.img)])
if quantization_cfg.get('dataset', None) is None:
quantization_cfg['dataset'] = dataset_file
if backend == Backend.ASCEND:
# TODO: Add this to backend manager in the future
if args.dump_info:
from mmdeploy.backend.ascend import update_sdk_pipeline
update_sdk_pipeline(args.work_dir)
if backend == Backend.VACC:
# TODO: Add this to task_processor in the future
from onnx2vacc_quant_dataset import get_quant
from mmdeploy.utils import get_model_inputs
deploy_cfg, model_cfg = load_config(deploy_cfg_path, model_cfg_path)
model_inputs = get_model_inputs(deploy_cfg)
for onnx_path, model_input in zip(ir_files, model_inputs):
quant_mode = model_input.get('qconfig', {}).get('dtype', 'fp16')
assert quant_mode in ['int8',
'fp16'], quant_mode + ' not support now'
shape_dict = model_input.get('shape', {})
if quant_mode == 'int8':
create_process(
'vacc quant dataset',
target=get_quant,
args=(deploy_cfg, model_cfg, shape_dict, checkpoint_path,
args.work_dir, args.device),
kwargs=dict(),
ret_value=ret_value)
# convert to backend
PIPELINE_MANAGER.set_log_level(log_level, [to_backend])
if backend == Backend.TENSORRT:
PIPELINE_MANAGER.enable_multiprocess(True, [to_backend])
backend_files = to_backend(
backend,
ir_files,
work_dir=args.work_dir,
deploy_cfg=deploy_cfg,
log_level=log_level,
device=args.device,
uri=args.uri)
# ncnn quantization
if backend == Backend.NCNN and quant:
from onnx2ncnn_quant_table import get_table
from mmdeploy.apis.ncnn import get_quant_model_file, ncnn2int8
model_param_paths = backend_files[::2]
model_bin_paths = backend_files[1::2]
backend_files = []
for onnx_path, model_param_path, model_bin_path in zip(
ir_files, model_param_paths, model_bin_paths):
deploy_cfg, model_cfg = load_config(deploy_cfg_path,
model_cfg_path)
quant_onnx, quant_table, quant_param, quant_bin = get_quant_model_file( # noqa: E501
onnx_path, args.work_dir)
create_process(
'ncnn quant table',
target=get_table,
args=(onnx_path, deploy_cfg, model_cfg, quant_onnx,
quant_table, quant_image_dir, args.device),
kwargs=dict(),
ret_value=ret_value)
create_process(
'ncnn_int8',
target=ncnn2int8,
args=(model_param_path, model_bin_path, quant_table,
quant_param, quant_bin),
kwargs=dict(),
ret_value=ret_value)
backend_files += [quant_param, quant_bin]
if args.test_img is None:
args.test_img = args.img
extra = dict(
backend=backend,
output_file=osp.join(args.work_dir, f'output_{backend.value}.jpg'),
show_result=args.show)
if backend == Backend.SNPE:
extra['uri'] = args.uri
# get backend inference result, try render
create_process(
f'visualize {backend.value} model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, backend_files, args.test_img,
args.device),
kwargs=extra,
ret_value=ret_value)
# get pytorch model inference result, try visualize if possible
create_process(
'visualize pytorch model',
target=visualize_model,
args=(model_cfg_path, deploy_cfg_path, [checkpoint_path],
args.test_img, args.device),
kwargs=dict(
backend=Backend.PYTORCH,
output_file=osp.join(args.work_dir, 'output_pytorch.jpg'),
show_result=args.show),
ret_value=ret_value)
logger.info('All process success.')
if __name__ == '__main__':
main()
|