File size: 5,007 Bytes
186701e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
from pathlib import Path
from typing import List, Optional, Tuple, Union

try:
    import tensorrt as trt
except Exception:
    trt = None
import warnings

import numpy as np
import torch

warnings.filterwarnings(action='ignore', category=DeprecationWarning)


class EngineBuilder:

    def __init__(
            self,
            checkpoint: Union[str, Path],
            opt_shape: Union[Tuple, List] = (1, 3, 640, 640),
            device: Optional[Union[str, int, torch.device]] = None) -> None:
        checkpoint = Path(checkpoint) if isinstance(checkpoint,
                                                    str) else checkpoint
        assert checkpoint.exists() and checkpoint.suffix == '.onnx'
        if isinstance(device, str):
            device = torch.device(device)
        elif isinstance(device, int):
            device = torch.device(f'cuda:{device}')

        self.checkpoint = checkpoint
        self.opt_shape = np.array(opt_shape, dtype=np.float32)
        self.device = device

    def __build_engine(self,
                       scale: Optional[List[List]] = None,
                       fp16: bool = True,
                       with_profiling: bool = True) -> None:
        logger = trt.Logger(trt.Logger.WARNING)
        trt.init_libnvinfer_plugins(logger, namespace='')
        builder = trt.Builder(logger)
        config = builder.create_builder_config()
        config.max_workspace_size = torch.cuda.get_device_properties(
            self.device).total_memory
        flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
        network = builder.create_network(flag)
        parser = trt.OnnxParser(network, logger)
        if not parser.parse_from_file(str(self.checkpoint)):
            raise RuntimeError(
                f'failed to load ONNX file: {str(self.checkpoint)}')
        inputs = [network.get_input(i) for i in range(network.num_inputs)]
        outputs = [network.get_output(i) for i in range(network.num_outputs)]
        profile = None
        dshape = -1 in network.get_input(0).shape
        if dshape:
            profile = builder.create_optimization_profile()
            if scale is None:
                scale = np.array(
                    [[1, 1, 0.5, 0.5], [1, 1, 1, 1], [4, 1, 1.5, 1.5]],
                    dtype=np.float32)
                scale = (self.opt_shape * scale).astype(np.int32)
            elif isinstance(scale, List):
                scale = np.array(scale, dtype=np.int32)
                assert scale.shape[0] == 3, 'Input a wrong scale list'
            else:
                raise NotImplementedError

        for inp in inputs:
            logger.log(
                trt.Logger.WARNING,
                f'input "{inp.name}" with shape{inp.shape} {inp.dtype}')
            if dshape:
                profile.set_shape(inp.name, *scale)
        for out in outputs:
            logger.log(
                trt.Logger.WARNING,
                f'output "{out.name}" with shape{out.shape} {out.dtype}')
        if fp16 and builder.platform_has_fast_fp16:
            config.set_flag(trt.BuilderFlag.FP16)
        self.weight = self.checkpoint.with_suffix('.engine')
        if dshape:
            config.add_optimization_profile(profile)
        if with_profiling:
            config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
        with builder.build_engine(network, config) as engine:
            self.weight.write_bytes(engine.serialize())
        logger.log(
            trt.Logger.WARNING, f'Build tensorrt engine finish.\n'
            f'Save in {str(self.weight.absolute())}')

    def build(self,
              scale: Optional[List[List]] = None,
              fp16: bool = True,
              with_profiling=True):
        self.__build_engine(scale, fp16, with_profiling)


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('checkpoint', help='Checkpoint file')
    parser.add_argument(
        '--img-size',
        nargs='+',
        type=int,
        default=[640, 640],
        help='Image size of height and width')
    parser.add_argument(
        '--device', type=str, default='cuda:0', help='TensorRT builder device')
    parser.add_argument(
        '--scales',
        type=str,
        default='[[1,3,640,640],[1,3,640,640],[1,3,640,640]]',
        help='Input scales for build dynamic input shape engine')
    parser.add_argument(
        '--fp16', action='store_true', help='Build model with fp16 mode')
    args = parser.parse_args()
    args.img_size *= 2 if len(args.img_size) == 1 else 1
    return args


def main(args):
    img_size = (1, 3, *args.img_size)
    try:
        scales = eval(args.scales)
    except Exception:
        print('Input scales is not a python variable')
        print('Set scales default None')
        scales = None
    builder = EngineBuilder(args.checkpoint, img_size, args.device)
    builder.build(scales, fp16=args.fp16)


if __name__ == '__main__':
    args = parse_args()
    main(args)