|
|
|
import argparse |
|
from collections import OrderedDict |
|
|
|
import torch |
|
|
|
convert_dict_p5 = { |
|
'model.0': 'backbone.stem', |
|
'model.1': 'backbone.stage1.0', |
|
'model.2': 'backbone.stage1.1', |
|
'model.3': 'backbone.stage2.0', |
|
'model.4': 'backbone.stage2.1', |
|
'model.5': 'backbone.stage3.0', |
|
'model.6': 'backbone.stage3.1', |
|
'model.7': 'backbone.stage4.0', |
|
'model.8': 'backbone.stage4.1', |
|
'model.9.cv1': 'backbone.stage4.2.conv1', |
|
'model.9.cv2': 'backbone.stage4.2.conv2', |
|
'model.10': 'neck.reduce_layers.2', |
|
'model.13': 'neck.top_down_layers.0.0', |
|
'model.14': 'neck.top_down_layers.0.1', |
|
'model.17': 'neck.top_down_layers.1', |
|
'model.18': 'neck.downsample_layers.0', |
|
'model.20': 'neck.bottom_up_layers.0', |
|
'model.21': 'neck.downsample_layers.1', |
|
'model.23': 'neck.bottom_up_layers.1', |
|
'model.24.m': 'bbox_head.head_module.convs_pred', |
|
'model.24.proto': 'bbox_head.head_module.proto_preds', |
|
} |
|
|
|
convert_dict_p6 = { |
|
'model.0': 'backbone.stem', |
|
'model.1': 'backbone.stage1.0', |
|
'model.2': 'backbone.stage1.1', |
|
'model.3': 'backbone.stage2.0', |
|
'model.4': 'backbone.stage2.1', |
|
'model.5': 'backbone.stage3.0', |
|
'model.6': 'backbone.stage3.1', |
|
'model.7': 'backbone.stage4.0', |
|
'model.8': 'backbone.stage4.1', |
|
'model.9': 'backbone.stage5.0', |
|
'model.10': 'backbone.stage5.1', |
|
'model.11.cv1': 'backbone.stage5.2.conv1', |
|
'model.11.cv2': 'backbone.stage5.2.conv2', |
|
'model.12': 'neck.reduce_layers.3', |
|
'model.15': 'neck.top_down_layers.0.0', |
|
'model.16': 'neck.top_down_layers.0.1', |
|
'model.19': 'neck.top_down_layers.1.0', |
|
'model.20': 'neck.top_down_layers.1.1', |
|
'model.23': 'neck.top_down_layers.2', |
|
'model.24': 'neck.downsample_layers.0', |
|
'model.26': 'neck.bottom_up_layers.0', |
|
'model.27': 'neck.downsample_layers.1', |
|
'model.29': 'neck.bottom_up_layers.1', |
|
'model.30': 'neck.downsample_layers.2', |
|
'model.32': 'neck.bottom_up_layers.2', |
|
'model.33.m': 'bbox_head.head_module.convs_pred', |
|
'model.33.proto': 'bbox_head.head_module.proto_preds', |
|
} |
|
|
|
|
|
def convert(src, dst): |
|
"""Convert keys in pretrained YOLOv5 models to mmyolo style.""" |
|
if src.endswith('6.pt'): |
|
convert_dict = convert_dict_p6 |
|
is_p6_model = True |
|
print('Converting P6 model') |
|
else: |
|
convert_dict = convert_dict_p5 |
|
is_p6_model = False |
|
print('Converting P5 model') |
|
try: |
|
yolov5_model = torch.load(src)['model'] |
|
blobs = yolov5_model.state_dict() |
|
except ModuleNotFoundError: |
|
raise RuntimeError( |
|
'This script must be placed under the ultralytics/yolov5 repo,' |
|
' because loading the official pretrained model need' |
|
' `model.py` to build model.') |
|
state_dict = OrderedDict() |
|
|
|
for key, weight in blobs.items(): |
|
|
|
num, module = key.split('.')[1:3] |
|
if (is_p6_model and |
|
(num == '11' or num == '33')) or (not is_p6_model and |
|
(num == '9' or num == '24')): |
|
if module == 'anchors': |
|
continue |
|
prefix = f'model.{num}.{module}' |
|
else: |
|
prefix = f'model.{num}' |
|
|
|
new_key = key.replace(prefix, convert_dict[prefix]) |
|
|
|
if '.m.' in new_key: |
|
new_key = new_key.replace('.m.', '.blocks.') |
|
new_key = new_key.replace('.cv', '.conv') |
|
elif 'bbox_head.head_module.proto_preds.cv' in new_key: |
|
new_key = new_key.replace( |
|
'bbox_head.head_module.proto_preds.cv', |
|
'bbox_head.head_module.proto_preds.conv') |
|
else: |
|
new_key = new_key.replace('.cv1', '.main_conv') |
|
new_key = new_key.replace('.cv2', '.short_conv') |
|
new_key = new_key.replace('.cv3', '.final_conv') |
|
|
|
state_dict[new_key] = weight |
|
print(f'Convert {key} to {new_key}') |
|
|
|
|
|
checkpoint = dict() |
|
checkpoint['state_dict'] = state_dict |
|
torch.save(checkpoint, dst) |
|
|
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Convert model keys') |
|
parser.add_argument( |
|
'--src', default='yolov5s.pt', help='src yolov5 model path') |
|
parser.add_argument('--dst', default='mmyolov5s.pt', help='save path') |
|
args = parser.parse_args() |
|
convert(args.src, args.dst) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|