|
|
|
import argparse |
|
from collections import OrderedDict |
|
|
|
import torch |
|
|
|
neck_dict = { |
|
'backbone.lateral_conv0': 'neck.reduce_layers.2', |
|
'backbone.C3_p4.conv': 'neck.top_down_layers.0.0.cv', |
|
'backbone.C3_p4.m.0.': 'neck.top_down_layers.0.0.m.0.', |
|
'backbone.reduce_conv1': 'neck.top_down_layers.0.1', |
|
'backbone.C3_p3.conv': 'neck.top_down_layers.1.cv', |
|
'backbone.C3_p3.m.0.': 'neck.top_down_layers.1.m.0.', |
|
'backbone.bu_conv2': 'neck.downsample_layers.0', |
|
'backbone.C3_n3.conv': 'neck.bottom_up_layers.0.cv', |
|
'backbone.C3_n3.m.0.': 'neck.bottom_up_layers.0.m.0.', |
|
'backbone.bu_conv1': 'neck.downsample_layers.1', |
|
'backbone.C3_n4.conv': 'neck.bottom_up_layers.1.cv', |
|
'backbone.C3_n4.m.0.': 'neck.bottom_up_layers.1.m.0.', |
|
} |
|
|
|
|
|
def convert_stem(model_key, model_weight, state_dict, converted_names): |
|
new_key = model_key[9:] |
|
state_dict[new_key] = model_weight |
|
converted_names.add(model_key) |
|
print(f'Convert {model_key} to {new_key}') |
|
|
|
|
|
def convert_backbone(model_key, model_weight, state_dict, converted_names): |
|
new_key = model_key.replace('backbone.dark', 'stage') |
|
num = int(new_key[14]) - 1 |
|
new_key = new_key[:14] + str(num) + new_key[15:] |
|
if '.m.' in model_key: |
|
new_key = new_key.replace('.m.', '.blocks.') |
|
elif not new_key[16] == '0' and 'stage4.1' not in new_key: |
|
new_key = new_key.replace('conv1', 'main_conv') |
|
new_key = new_key.replace('conv2', 'short_conv') |
|
new_key = new_key.replace('conv3', 'final_conv') |
|
state_dict[new_key] = model_weight |
|
converted_names.add(model_key) |
|
print(f'Convert {model_key} to {new_key}') |
|
|
|
|
|
def convert_neck(model_key, model_weight, state_dict, converted_names): |
|
for old, new in neck_dict.items(): |
|
if old in model_key: |
|
new_key = model_key.replace(old, new) |
|
if '.m.' in model_key: |
|
new_key = new_key.replace('.m.', '.blocks.') |
|
elif '.C' in model_key: |
|
new_key = new_key.replace('cv1', 'main_conv') |
|
new_key = new_key.replace('cv2', 'short_conv') |
|
new_key = new_key.replace('cv3', 'final_conv') |
|
state_dict[new_key] = model_weight |
|
converted_names.add(model_key) |
|
print(f'Convert {model_key} to {new_key}') |
|
|
|
|
|
def convert_head(model_key, model_weight, state_dict, converted_names): |
|
if 'stem' in model_key: |
|
new_key = model_key.replace('head.stem', 'neck.out_layer') |
|
elif 'cls_convs' in model_key: |
|
new_key = model_key.replace( |
|
'head.cls_convs', 'bbox_head.head_module.multi_level_cls_convs') |
|
elif 'reg_convs' in model_key: |
|
new_key = model_key.replace( |
|
'head.reg_convs', 'bbox_head.head_module.multi_level_reg_convs') |
|
elif 'preds' in model_key: |
|
new_key = model_key.replace('head.', |
|
'bbox_head.head_module.multi_level_conv_') |
|
new_key = new_key.replace('_preds', '') |
|
state_dict[new_key] = model_weight |
|
converted_names.add(model_key) |
|
print(f'Convert {model_key} to {new_key}') |
|
|
|
|
|
def convert(src, dst): |
|
"""Convert keys in detectron pretrained YOLOX models to mmyolo style.""" |
|
blobs = torch.load(src)['model'] |
|
state_dict = OrderedDict() |
|
converted_names = set() |
|
|
|
for key, weight in blobs.items(): |
|
if 'backbone.stem' in key: |
|
convert_stem(key, weight, state_dict, converted_names) |
|
elif 'backbone.backbone' in key: |
|
convert_backbone(key, weight, state_dict, converted_names) |
|
elif 'backbone.neck' not in key and 'head' not in key: |
|
convert_neck(key, weight, state_dict, converted_names) |
|
elif 'head' in key: |
|
convert_head(key, weight, state_dict, converted_names) |
|
|
|
|
|
checkpoint = dict() |
|
checkpoint['state_dict'] = state_dict |
|
torch.save(checkpoint, dst) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Convert model keys') |
|
parser.add_argument( |
|
'--src', default='yolox_s.pth', help='src yolox model path') |
|
parser.add_argument('--dst', default='mmyoloxs.pt', help='save path') |
|
args = parser.parse_args() |
|
convert(args.src, args.dst) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|