|
|
|
import os |
|
from tempfile import NamedTemporaryFile, TemporaryDirectory |
|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
from mmengine import Config |
|
|
|
try: |
|
import importlib |
|
importlib.import_module('mmdeploy') |
|
except ImportError: |
|
pytest.skip('mmdeploy is not installed.', allow_module_level=True) |
|
|
|
import mmdeploy.backend.onnxruntime as ort_apis |
|
from mmdeploy.apis import build_task_processor |
|
from mmdeploy.codebase import import_codebase |
|
from mmdeploy.utils import load_config |
|
from mmdeploy.utils.config_utils import register_codebase |
|
from mmdeploy.utils.test import SwitchBackendWrapper |
|
|
|
try: |
|
codebase = register_codebase('mmyolo') |
|
import_codebase(codebase, ['mmyolo.deploy']) |
|
except ImportError: |
|
pytest.skip('mmyolo is not installed.', allow_module_level=True) |
|
|
|
model_cfg_path = 'tests/test_deploy/data/model.py' |
|
model_cfg = load_config(model_cfg_path)[0] |
|
model_cfg.test_dataloader.dataset.data_root = \ |
|
'tests/data' |
|
model_cfg.test_dataloader.dataset.ann_file = 'coco_sample.json' |
|
model_cfg.test_evaluator.ann_file = \ |
|
'tests/coco_sample.json' |
|
deploy_cfg = Config( |
|
dict( |
|
backend_config=dict(type='onnxruntime'), |
|
codebase_config=dict( |
|
type='mmyolo', |
|
task='ObjectDetection', |
|
post_processing=dict( |
|
score_threshold=0.05, |
|
confidence_threshold=0.005, |
|
iou_threshold=0.5, |
|
max_output_boxes_per_class=200, |
|
pre_top_k=5000, |
|
keep_top_k=100, |
|
background_label_id=-1, |
|
), |
|
module=['mmyolo.deploy']), |
|
onnx_config=dict( |
|
type='onnx', |
|
export_params=True, |
|
keep_initializers_as_inputs=False, |
|
opset_version=11, |
|
input_shape=None, |
|
input_names=['input'], |
|
output_names=['dets', 'labels']))) |
|
onnx_file = NamedTemporaryFile(suffix='.onnx').name |
|
task_processor = None |
|
img_shape = (32, 32) |
|
img = np.random.rand(*img_shape, 3) |
|
|
|
|
|
@pytest.fixture(autouse=True) |
|
def init_task_processor(): |
|
global task_processor |
|
task_processor = build_task_processor(model_cfg, deploy_cfg, 'cpu') |
|
|
|
|
|
@pytest.fixture |
|
def backend_model(): |
|
from mmdeploy.backend.onnxruntime import ORTWrapper |
|
ort_apis.__dict__.update({'ORTWrapper': ORTWrapper}) |
|
wrapper = SwitchBackendWrapper(ORTWrapper) |
|
wrapper.set( |
|
outputs={ |
|
'dets': torch.rand(1, 10, 5).sort(2).values, |
|
'labels': torch.randint(0, 10, (1, 10)) |
|
}) |
|
|
|
yield task_processor.build_backend_model(['']) |
|
|
|
wrapper.recover() |
|
|
|
|
|
def test_visualize(backend_model): |
|
img_path = 'tests/data/color.jpg' |
|
input_dict, _ = task_processor.create_input( |
|
img_path, input_shape=img_shape) |
|
results = backend_model.test_step(input_dict)[0] |
|
with TemporaryDirectory() as dir: |
|
filename = dir + 'tmp.jpg' |
|
task_processor.visualize(img, results, filename, 'window') |
|
assert os.path.exists(filename) |
|
|