|
|
|
import argparse |
|
import copy |
|
import os |
|
import time |
|
|
|
import torch |
|
from mmengine import Config, DictAction |
|
from mmengine.dist import get_world_size, init_dist |
|
from mmengine.logging import MMLogger, print_log |
|
from mmengine.registry import init_default_scope |
|
from mmengine.runner import Runner, load_checkpoint |
|
from mmengine.utils import mkdir_or_exist |
|
from mmengine.utils.dl_utils import set_multi_processing |
|
|
|
from mmyolo.registry import MODELS |
|
|
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='MMYOLO benchmark a model') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument('checkpoint', help='checkpoint file') |
|
parser.add_argument( |
|
'--repeat-num', |
|
type=int, |
|
default=1, |
|
help='number of repeat times of measurement for averaging the results') |
|
parser.add_argument( |
|
'--max-iter', type=int, default=2000, help='num of max iter') |
|
parser.add_argument( |
|
'--log-interval', type=int, default=50, help='interval of logging') |
|
parser.add_argument( |
|
'--work-dir', |
|
help='the directory to save the file containing ' |
|
'benchmark metrics') |
|
parser.add_argument( |
|
'--fuse-conv-bn', |
|
action='store_true', |
|
help='Whether to fuse conv and bn, this will slightly increase' |
|
'the inference speed') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
parser.add_argument( |
|
'--launcher', |
|
choices=['none', 'pytorch', 'slurm', 'mpi'], |
|
default='none', |
|
help='job launcher') |
|
parser.add_argument('--local_rank', type=int, default=0) |
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
return args |
|
|
|
|
|
def measure_inference_speed(cfg, checkpoint, max_iter, log_interval, |
|
is_fuse_conv_bn): |
|
env_cfg = cfg.get('env_cfg') |
|
if env_cfg.get('cudnn_benchmark'): |
|
torch.backends.cudnn.benchmark = True |
|
|
|
mp_cfg: dict = env_cfg.get('mp_cfg', {}) |
|
set_multi_processing(**mp_cfg, distributed=cfg.distributed) |
|
|
|
|
|
|
|
|
|
dataloader_cfg = cfg.test_dataloader |
|
dataloader_cfg['num_workers'] = 0 |
|
dataloader_cfg['batch_size'] = 1 |
|
dataloader_cfg['persistent_workers'] = False |
|
data_loader = Runner.build_dataloader(dataloader_cfg) |
|
|
|
|
|
model = MODELS.build(cfg.model) |
|
load_checkpoint(model, checkpoint, map_location='cpu') |
|
model = model.cuda() |
|
model.eval() |
|
|
|
|
|
num_warmup = 5 |
|
pure_inf_time = 0 |
|
fps = 0 |
|
|
|
|
|
for i, data in enumerate(data_loader): |
|
|
|
torch.cuda.synchronize() |
|
start_time = time.perf_counter() |
|
|
|
with torch.no_grad(): |
|
model.test_step(data) |
|
|
|
torch.cuda.synchronize() |
|
elapsed = time.perf_counter() - start_time |
|
|
|
if i >= num_warmup: |
|
pure_inf_time += elapsed |
|
if (i + 1) % log_interval == 0: |
|
fps = (i + 1 - num_warmup) / pure_inf_time |
|
print_log( |
|
f'Done image [{i + 1:<3}/ {max_iter}], ' |
|
f'fps: {fps:.1f} img / s, ' |
|
f'times per image: {1000 / fps:.1f} ms / img', 'current') |
|
|
|
if (i + 1) == max_iter: |
|
fps = (i + 1 - num_warmup) / pure_inf_time |
|
print_log( |
|
f'Overall fps: {fps:.1f} img / s, ' |
|
f'times per image: {1000 / fps:.1f} ms / img', 'current') |
|
break |
|
return fps |
|
|
|
|
|
def repeat_measure_inference_speed(cfg, |
|
checkpoint, |
|
max_iter, |
|
log_interval, |
|
is_fuse_conv_bn, |
|
repeat_num=1): |
|
assert repeat_num >= 1 |
|
|
|
fps_list = [] |
|
|
|
for _ in range(repeat_num): |
|
cp_cfg = copy.deepcopy(cfg) |
|
|
|
fps_list.append( |
|
measure_inference_speed(cp_cfg, checkpoint, max_iter, log_interval, |
|
is_fuse_conv_bn)) |
|
|
|
if repeat_num > 1: |
|
fps_list_ = [round(fps, 1) for fps in fps_list] |
|
times_pre_image_list_ = [round(1000 / fps, 1) for fps in fps_list] |
|
mean_fps_ = sum(fps_list_) / len(fps_list_) |
|
mean_times_pre_image_ = sum(times_pre_image_list_) / len( |
|
times_pre_image_list_) |
|
print_log( |
|
f'Overall fps: {fps_list_}[{mean_fps_:.1f}] img / s, ' |
|
f'times per image: ' |
|
f'{times_pre_image_list_}[{mean_times_pre_image_:.1f}] ms / img', |
|
'current') |
|
return fps_list |
|
|
|
return fps_list[0] |
|
|
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
cfg = Config.fromfile(args.config) |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
init_default_scope(cfg.get('default_scope', 'mmyolo')) |
|
|
|
distributed = False |
|
if args.launcher != 'none': |
|
init_dist(args.launcher, **cfg.get('env_cfg', {}).get('dist_cfg', {})) |
|
distributed = True |
|
assert get_world_size( |
|
) == 1, 'Inference benchmark does not allow distributed multi-GPU' |
|
|
|
cfg.distributed = distributed |
|
|
|
log_file = None |
|
if args.work_dir: |
|
log_file = os.path.join(args.work_dir, 'benchmark.log') |
|
mkdir_or_exist(args.work_dir) |
|
|
|
MMLogger.get_instance('mmyolo', log_file=log_file, log_level='INFO') |
|
|
|
repeat_measure_inference_speed(cfg, args.checkpoint, args.max_iter, |
|
args.log_interval, args.fuse_conv_bn, |
|
args.repeat_num) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|