|
|
|
import argparse |
|
import os.path as osp |
|
|
|
from mmdet.models.utils import mask2ndarray |
|
from mmdet.structures.bbox import BaseBoxes |
|
from mmengine.config import Config, DictAction |
|
from mmengine.registry import init_default_scope |
|
from mmengine.utils import ProgressBar |
|
|
|
from mmyolo.registry import DATASETS, VISUALIZERS |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Browse a dataset') |
|
parser.add_argument('config', help='train config file path') |
|
parser.add_argument( |
|
'--output-dir', |
|
default=None, |
|
type=str, |
|
help='If there is no display interface, you can save it') |
|
parser.add_argument('--not-show', default=False, action='store_true') |
|
parser.add_argument( |
|
'--show-interval', |
|
type=float, |
|
default=0, |
|
help='the interval of show (s)') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
cfg = Config.fromfile(args.config) |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
|
|
init_default_scope(cfg.get('default_scope', 'mmyolo')) |
|
|
|
dataset = DATASETS.build(cfg.train_dataloader.dataset) |
|
visualizer = VISUALIZERS.build(cfg.visualizer) |
|
visualizer.dataset_meta = dataset.metainfo |
|
|
|
progress_bar = ProgressBar(len(dataset)) |
|
for item in dataset: |
|
img = item['inputs'].permute(1, 2, 0).numpy() |
|
data_sample = item['data_samples'].numpy() |
|
gt_instances = data_sample.gt_instances |
|
img_path = osp.basename(item['data_samples'].img_path) |
|
|
|
out_file = osp.join( |
|
args.output_dir, |
|
osp.basename(img_path)) if args.output_dir is not None else None |
|
|
|
img = img[..., [2, 1, 0]] |
|
gt_bboxes = gt_instances.get('bboxes', None) |
|
if gt_bboxes is not None and isinstance(gt_bboxes, BaseBoxes): |
|
gt_instances.bboxes = gt_bboxes.tensor |
|
gt_masks = gt_instances.get('masks', None) |
|
if gt_masks is not None: |
|
masks = mask2ndarray(gt_masks) |
|
gt_instances.masks = masks.astype(bool) |
|
data_sample.gt_instances = gt_instances |
|
|
|
visualizer.add_datasample( |
|
osp.basename(img_path), |
|
img, |
|
data_sample, |
|
draw_pred=False, |
|
show=not args.not_show, |
|
wait_time=args.show_interval, |
|
out_file=out_file) |
|
|
|
progress_bar.update() |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|