|
import argparse |
|
import os |
|
|
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from matplotlib.ticker import MultipleLocator |
|
from mmcv.ops import nms |
|
from mmdet.evaluation import bbox_overlaps |
|
from mmdet.utils import replace_cfg_vals, update_data_root |
|
from mmengine import Config, DictAction |
|
from mmengine.fileio import load |
|
from mmengine.registry import init_default_scope |
|
from mmengine.utils import ProgressBar |
|
|
|
from mmyolo.registry import DATASETS |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description='Generate confusion matrix from detection results') |
|
parser.add_argument('config', help='test config file path') |
|
parser.add_argument( |
|
'prediction_path', help='prediction path where test .pkl result') |
|
parser.add_argument( |
|
'save_dir', help='directory where confusion matrix will be saved') |
|
parser.add_argument( |
|
'--show', action='store_true', help='show confusion matrix') |
|
parser.add_argument( |
|
'--color-theme', |
|
default='plasma', |
|
help='theme of the matrix color map') |
|
parser.add_argument( |
|
'--score-thr', |
|
type=float, |
|
default=0.3, |
|
help='score threshold to filter detection bboxes') |
|
parser.add_argument( |
|
'--tp-iou-thr', |
|
type=float, |
|
default=0.5, |
|
help='IoU threshold to be considered as matched') |
|
parser.add_argument( |
|
'--nms-iou-thr', |
|
type=float, |
|
default=None, |
|
help='nms IoU threshold, only applied when users want to change the' |
|
'nms IoU threshold.') |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def calculate_confusion_matrix(dataset, |
|
results, |
|
score_thr=0, |
|
nms_iou_thr=None, |
|
tp_iou_thr=0.5): |
|
"""Calculate the confusion matrix. |
|
|
|
Args: |
|
dataset (Dataset): Test or val dataset. |
|
results (list[ndarray]): A list of detection results in each image. |
|
score_thr (float|optional): Score threshold to filter bboxes. |
|
Default: 0. |
|
nms_iou_thr (float|optional): nms IoU threshold, the detection results |
|
have done nms in the detector, only applied when users want to |
|
change the nms IoU threshold. Default: None. |
|
tp_iou_thr (float|optional): IoU threshold to be considered as matched. |
|
Default: 0.5. |
|
""" |
|
num_classes = len(dataset.metainfo['classes']) |
|
confusion_matrix = np.zeros(shape=[num_classes + 1, num_classes + 1]) |
|
assert len(dataset) == len(results) |
|
prog_bar = ProgressBar(len(results)) |
|
for idx, per_img_res in enumerate(results): |
|
res_bboxes = per_img_res['pred_instances'] |
|
gts = dataset.get_data_info(idx)['instances'] |
|
analyze_per_img_dets(confusion_matrix, gts, res_bboxes, score_thr, |
|
tp_iou_thr, nms_iou_thr) |
|
prog_bar.update() |
|
return confusion_matrix |
|
|
|
|
|
def analyze_per_img_dets(confusion_matrix, |
|
gts, |
|
result, |
|
score_thr=0, |
|
tp_iou_thr=0.5, |
|
nms_iou_thr=None): |
|
"""Analyze detection results on each image. |
|
|
|
Args: |
|
confusion_matrix (ndarray): The confusion matrix, |
|
has shape (num_classes + 1, num_classes + 1). |
|
gt_bboxes (ndarray): Ground truth bboxes, has shape (num_gt, 4). |
|
gt_labels (ndarray): Ground truth labels, has shape (num_gt). |
|
result (ndarray): Detection results, has shape |
|
(num_classes, num_bboxes, 5). |
|
score_thr (float): Score threshold to filter bboxes. |
|
Default: 0. |
|
tp_iou_thr (float): IoU threshold to be considered as matched. |
|
Default: 0.5. |
|
nms_iou_thr (float|optional): nms IoU threshold, the detection results |
|
have done nms in the detector, only applied when users want to |
|
change the nms IoU threshold. Default: None. |
|
""" |
|
true_positives = np.zeros(len(gts)) |
|
gt_bboxes = [] |
|
gt_labels = [] |
|
for gt in gts: |
|
gt_bboxes.append(gt['bbox']) |
|
gt_labels.append(gt['bbox_label']) |
|
|
|
gt_bboxes = np.array(gt_bboxes) |
|
gt_labels = np.array(gt_labels) |
|
|
|
unique_label = np.unique(result['labels'].numpy()) |
|
|
|
for det_label in unique_label: |
|
mask = (result['labels'] == det_label) |
|
det_bboxes = result['bboxes'][mask].numpy() |
|
det_scores = result['scores'][mask].numpy() |
|
|
|
if nms_iou_thr: |
|
det_bboxes, _ = nms( |
|
det_bboxes, det_scores, nms_iou_thr, score_threshold=score_thr) |
|
ious = bbox_overlaps(det_bboxes[:, :4], gt_bboxes) |
|
for i, score in enumerate(det_scores): |
|
det_match = 0 |
|
if score >= score_thr: |
|
for j, gt_label in enumerate(gt_labels): |
|
if ious[i, j] >= tp_iou_thr: |
|
det_match += 1 |
|
if gt_label == det_label: |
|
true_positives[j] += 1 |
|
confusion_matrix[gt_label, det_label] += 1 |
|
if det_match == 0: |
|
confusion_matrix[-1, det_label] += 1 |
|
for num_tp, gt_label in zip(true_positives, gt_labels): |
|
if num_tp == 0: |
|
confusion_matrix[gt_label, -1] += 1 |
|
|
|
|
|
def plot_confusion_matrix(confusion_matrix, |
|
labels, |
|
save_dir=None, |
|
show=True, |
|
title='Normalized Confusion Matrix', |
|
color_theme='plasma'): |
|
"""Draw confusion matrix with matplotlib. |
|
|
|
Args: |
|
confusion_matrix (ndarray): The confusion matrix. |
|
labels (list[str]): List of class names. |
|
save_dir (str|optional): If set, save the confusion matrix plot to the |
|
given path. Default: None. |
|
show (bool): Whether to show the plot. Default: True. |
|
title (str): Title of the plot. Default: `Normalized Confusion Matrix`. |
|
color_theme (str): Theme of the matrix color map. Default: `plasma`. |
|
""" |
|
|
|
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis] |
|
confusion_matrix = \ |
|
confusion_matrix.astype(np.float32) / per_label_sums * 100 |
|
|
|
num_classes = len(labels) |
|
fig, ax = plt.subplots( |
|
figsize=(0.5 * num_classes, 0.5 * num_classes * 0.8), dpi=180) |
|
cmap = plt.get_cmap(color_theme) |
|
im = ax.imshow(confusion_matrix, cmap=cmap) |
|
plt.colorbar(mappable=im, ax=ax) |
|
|
|
title_font = {'weight': 'bold', 'size': 12} |
|
ax.set_title(title, fontdict=title_font) |
|
label_font = {'size': 10} |
|
plt.ylabel('Ground Truth Label', fontdict=label_font) |
|
plt.xlabel('Prediction Label', fontdict=label_font) |
|
|
|
|
|
xmajor_locator = MultipleLocator(1) |
|
xminor_locator = MultipleLocator(0.5) |
|
ax.xaxis.set_major_locator(xmajor_locator) |
|
ax.xaxis.set_minor_locator(xminor_locator) |
|
ymajor_locator = MultipleLocator(1) |
|
yminor_locator = MultipleLocator(0.5) |
|
ax.yaxis.set_major_locator(ymajor_locator) |
|
ax.yaxis.set_minor_locator(yminor_locator) |
|
|
|
|
|
ax.grid(True, which='minor', linestyle='-') |
|
|
|
|
|
ax.set_xticks(np.arange(num_classes)) |
|
ax.set_yticks(np.arange(num_classes)) |
|
ax.set_xticklabels(labels) |
|
ax.set_yticklabels(labels) |
|
|
|
ax.tick_params( |
|
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True) |
|
plt.setp( |
|
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor') |
|
|
|
|
|
for i in range(num_classes): |
|
for j in range(num_classes): |
|
ax.text( |
|
j, |
|
i, |
|
'{}%'.format( |
|
int(confusion_matrix[ |
|
i, |
|
j]) if not np.isnan(confusion_matrix[i, j]) else -1), |
|
ha='center', |
|
va='center', |
|
color='w', |
|
size=7) |
|
|
|
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) |
|
|
|
fig.tight_layout() |
|
if save_dir is not None: |
|
plt.savefig( |
|
os.path.join(save_dir, 'confusion_matrix.png'), format='png') |
|
if show: |
|
plt.show() |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
cfg = Config.fromfile(args.config) |
|
|
|
|
|
cfg = replace_cfg_vals(cfg) |
|
|
|
|
|
update_data_root(cfg) |
|
|
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
init_default_scope(cfg.get('default_scope', 'mmyolo')) |
|
|
|
results = load(args.prediction_path) |
|
|
|
if not os.path.exists(args.save_dir): |
|
os.makedirs(args.save_dir) |
|
|
|
dataset = DATASETS.build(cfg.test_dataloader.dataset) |
|
|
|
confusion_matrix = calculate_confusion_matrix(dataset, results, |
|
args.score_thr, |
|
args.nms_iou_thr, |
|
args.tp_iou_thr) |
|
plot_confusion_matrix( |
|
confusion_matrix, |
|
dataset.metainfo['classes'] + ('background', ), |
|
save_dir=args.save_dir, |
|
show=args.show, |
|
color_theme=args.color_theme) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|