stevengrove
initial commit
186701e
raw
history blame
9.9 kB
import argparse
import os
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import MultipleLocator
from mmcv.ops import nms
from mmdet.evaluation import bbox_overlaps
from mmdet.utils import replace_cfg_vals, update_data_root
from mmengine import Config, DictAction
from mmengine.fileio import load
from mmengine.registry import init_default_scope
from mmengine.utils import ProgressBar
from mmyolo.registry import DATASETS
def parse_args():
parser = argparse.ArgumentParser(
description='Generate confusion matrix from detection results')
parser.add_argument('config', help='test config file path')
parser.add_argument(
'prediction_path', help='prediction path where test .pkl result')
parser.add_argument(
'save_dir', help='directory where confusion matrix will be saved')
parser.add_argument(
'--show', action='store_true', help='show confusion matrix')
parser.add_argument(
'--color-theme',
default='plasma',
help='theme of the matrix color map')
parser.add_argument(
'--score-thr',
type=float,
default=0.3,
help='score threshold to filter detection bboxes')
parser.add_argument(
'--tp-iou-thr',
type=float,
default=0.5,
help='IoU threshold to be considered as matched')
parser.add_argument(
'--nms-iou-thr',
type=float,
default=None,
help='nms IoU threshold, only applied when users want to change the'
'nms IoU threshold.')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def calculate_confusion_matrix(dataset,
results,
score_thr=0,
nms_iou_thr=None,
tp_iou_thr=0.5):
"""Calculate the confusion matrix.
Args:
dataset (Dataset): Test or val dataset.
results (list[ndarray]): A list of detection results in each image.
score_thr (float|optional): Score threshold to filter bboxes.
Default: 0.
nms_iou_thr (float|optional): nms IoU threshold, the detection results
have done nms in the detector, only applied when users want to
change the nms IoU threshold. Default: None.
tp_iou_thr (float|optional): IoU threshold to be considered as matched.
Default: 0.5.
"""
num_classes = len(dataset.metainfo['classes'])
confusion_matrix = np.zeros(shape=[num_classes + 1, num_classes + 1])
assert len(dataset) == len(results)
prog_bar = ProgressBar(len(results))
for idx, per_img_res in enumerate(results):
res_bboxes = per_img_res['pred_instances']
gts = dataset.get_data_info(idx)['instances']
analyze_per_img_dets(confusion_matrix, gts, res_bboxes, score_thr,
tp_iou_thr, nms_iou_thr)
prog_bar.update()
return confusion_matrix
def analyze_per_img_dets(confusion_matrix,
gts,
result,
score_thr=0,
tp_iou_thr=0.5,
nms_iou_thr=None):
"""Analyze detection results on each image.
Args:
confusion_matrix (ndarray): The confusion matrix,
has shape (num_classes + 1, num_classes + 1).
gt_bboxes (ndarray): Ground truth bboxes, has shape (num_gt, 4).
gt_labels (ndarray): Ground truth labels, has shape (num_gt).
result (ndarray): Detection results, has shape
(num_classes, num_bboxes, 5).
score_thr (float): Score threshold to filter bboxes.
Default: 0.
tp_iou_thr (float): IoU threshold to be considered as matched.
Default: 0.5.
nms_iou_thr (float|optional): nms IoU threshold, the detection results
have done nms in the detector, only applied when users want to
change the nms IoU threshold. Default: None.
"""
true_positives = np.zeros(len(gts))
gt_bboxes = []
gt_labels = []
for gt in gts:
gt_bboxes.append(gt['bbox'])
gt_labels.append(gt['bbox_label'])
gt_bboxes = np.array(gt_bboxes)
gt_labels = np.array(gt_labels)
unique_label = np.unique(result['labels'].numpy())
for det_label in unique_label:
mask = (result['labels'] == det_label)
det_bboxes = result['bboxes'][mask].numpy()
det_scores = result['scores'][mask].numpy()
if nms_iou_thr:
det_bboxes, _ = nms(
det_bboxes, det_scores, nms_iou_thr, score_threshold=score_thr)
ious = bbox_overlaps(det_bboxes[:, :4], gt_bboxes)
for i, score in enumerate(det_scores):
det_match = 0
if score >= score_thr:
for j, gt_label in enumerate(gt_labels):
if ious[i, j] >= tp_iou_thr:
det_match += 1
if gt_label == det_label:
true_positives[j] += 1 # TP
confusion_matrix[gt_label, det_label] += 1
if det_match == 0: # BG FP
confusion_matrix[-1, det_label] += 1
for num_tp, gt_label in zip(true_positives, gt_labels):
if num_tp == 0: # FN
confusion_matrix[gt_label, -1] += 1
def plot_confusion_matrix(confusion_matrix,
labels,
save_dir=None,
show=True,
title='Normalized Confusion Matrix',
color_theme='plasma'):
"""Draw confusion matrix with matplotlib.
Args:
confusion_matrix (ndarray): The confusion matrix.
labels (list[str]): List of class names.
save_dir (str|optional): If set, save the confusion matrix plot to the
given path. Default: None.
show (bool): Whether to show the plot. Default: True.
title (str): Title of the plot. Default: `Normalized Confusion Matrix`.
color_theme (str): Theme of the matrix color map. Default: `plasma`.
"""
# normalize the confusion matrix
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis]
confusion_matrix = \
confusion_matrix.astype(np.float32) / per_label_sums * 100
num_classes = len(labels)
fig, ax = plt.subplots(
figsize=(0.5 * num_classes, 0.5 * num_classes * 0.8), dpi=180)
cmap = plt.get_cmap(color_theme)
im = ax.imshow(confusion_matrix, cmap=cmap)
plt.colorbar(mappable=im, ax=ax)
title_font = {'weight': 'bold', 'size': 12}
ax.set_title(title, fontdict=title_font)
label_font = {'size': 10}
plt.ylabel('Ground Truth Label', fontdict=label_font)
plt.xlabel('Prediction Label', fontdict=label_font)
# draw locator
xmajor_locator = MultipleLocator(1)
xminor_locator = MultipleLocator(0.5)
ax.xaxis.set_major_locator(xmajor_locator)
ax.xaxis.set_minor_locator(xminor_locator)
ymajor_locator = MultipleLocator(1)
yminor_locator = MultipleLocator(0.5)
ax.yaxis.set_major_locator(ymajor_locator)
ax.yaxis.set_minor_locator(yminor_locator)
# draw grid
ax.grid(True, which='minor', linestyle='-')
# draw label
ax.set_xticks(np.arange(num_classes))
ax.set_yticks(np.arange(num_classes))
ax.set_xticklabels(labels)
ax.set_yticklabels(labels)
ax.tick_params(
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True)
plt.setp(
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor')
# draw confution matrix value
for i in range(num_classes):
for j in range(num_classes):
ax.text(
j,
i,
'{}%'.format(
int(confusion_matrix[
i,
j]) if not np.isnan(confusion_matrix[i, j]) else -1),
ha='center',
va='center',
color='w',
size=7)
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1
fig.tight_layout()
if save_dir is not None:
plt.savefig(
os.path.join(save_dir, 'confusion_matrix.png'), format='png')
if show:
plt.show()
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
# replace the ${key} with the value of cfg.key
cfg = replace_cfg_vals(cfg)
# update data root according to MMYOLO_DATASETS
update_data_root(cfg)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
init_default_scope(cfg.get('default_scope', 'mmyolo'))
results = load(args.prediction_path)
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
dataset = DATASETS.build(cfg.test_dataloader.dataset)
confusion_matrix = calculate_confusion_matrix(dataset, results,
args.score_thr,
args.nms_iou_thr,
args.tp_iou_thr)
plot_confusion_matrix(
confusion_matrix,
dataset.metainfo['classes'] + ('background', ),
save_dir=args.save_dir,
show=args.show,
color_theme=args.color_theme)
if __name__ == '__main__':
main()