|
|
|
import argparse |
|
import tempfile |
|
from pathlib import Path |
|
|
|
import torch |
|
from mmdet.registry import MODELS |
|
from mmengine.analysis import get_model_complexity_info |
|
from mmengine.config import Config, DictAction |
|
from mmengine.logging import MMLogger |
|
from mmengine.model import revert_sync_batchnorm |
|
from mmengine.registry import init_default_scope |
|
|
|
from mmyolo.utils import switch_to_deploy |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Get a detector flops') |
|
parser.add_argument('config', help='train config file path') |
|
parser.add_argument( |
|
'--shape', |
|
type=int, |
|
nargs='+', |
|
default=[640, 640], |
|
help='input image size') |
|
parser.add_argument( |
|
'--show-arch', |
|
action='store_true', |
|
help='whether return the statistics in the form of network layers') |
|
parser.add_argument( |
|
'--not-show-table', |
|
action='store_true', |
|
help='whether return the statistics in the form of table'), |
|
parser.add_argument( |
|
'--cfg-options', |
|
nargs='+', |
|
action=DictAction, |
|
help='override some settings in the used config, the key-value pair ' |
|
'in xxx=yyy format will be merged into config file. If the value to ' |
|
'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' |
|
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' |
|
'Note that the quotation marks are necessary and that no white space ' |
|
'is allowed.') |
|
return parser.parse_args() |
|
|
|
|
|
def inference(args, logger): |
|
config_name = Path(args.config) |
|
if not config_name.exists(): |
|
logger.error(f'{config_name} not found.') |
|
|
|
cfg = Config.fromfile(args.config) |
|
cfg.work_dir = tempfile.TemporaryDirectory().name |
|
cfg.log_level = 'WARN' |
|
if args.cfg_options is not None: |
|
cfg.merge_from_dict(args.cfg_options) |
|
|
|
init_default_scope(cfg.get('default_scope', 'mmyolo')) |
|
|
|
if len(args.shape) == 1: |
|
h = w = args.shape[0] |
|
elif len(args.shape) == 2: |
|
h, w = args.shape |
|
else: |
|
raise ValueError('invalid input shape') |
|
|
|
|
|
model = MODELS.build(cfg.model) |
|
if torch.cuda.is_available(): |
|
model.cuda() |
|
model = revert_sync_batchnorm(model) |
|
model.eval() |
|
switch_to_deploy(model) |
|
|
|
|
|
|
|
data_batch = {'inputs': [torch.rand(3, h, w)], 'batch_samples': [None]} |
|
data = model.data_preprocessor(data_batch) |
|
result = {'ori_shape': (h, w), 'pad_shape': data['inputs'].shape[-2:]} |
|
outputs = get_model_complexity_info( |
|
model, |
|
input_shape=None, |
|
inputs=data['inputs'], |
|
show_table=not args.not_show_table, |
|
show_arch=args.show_arch) |
|
|
|
result['flops'] = outputs['flops_str'] |
|
result['params'] = outputs['params_str'] |
|
result['out_table'] = outputs['out_table'] |
|
result['out_arch'] = outputs['out_arch'] |
|
|
|
return result |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
logger = MMLogger.get_instance(name='MMLogger') |
|
result = inference(args, logger) |
|
|
|
split_line = '=' * 30 |
|
|
|
ori_shape = result['ori_shape'] |
|
pad_shape = result['pad_shape'] |
|
flops = result['flops'] |
|
params = result['params'] |
|
|
|
print(result['out_table']) |
|
print(result['out_arch']) |
|
|
|
if pad_shape != ori_shape: |
|
print(f'{split_line}\nUse size divisor set input shape ' |
|
f'from {ori_shape} to {pad_shape}') |
|
|
|
print(f'{split_line}\n' |
|
f'Input shape: {pad_shape}\nModel Flops: {flops}\n' |
|
f'Model Parameters: {params}\n{split_line}') |
|
print('!!!Please be cautious if you use the results in papers. ' |
|
'You may need to check if all ops are supported and verify ' |
|
'that the flops computation is correct.') |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|