YOLOW / yolo_world /models /necks /yolo_world_pafpn.py
stevengrove
initial commit
186701e
raw
history blame
9.84 kB
# Copyright (c) Tencent Inc. All rights reserved.
import copy
from typing import List, Union
import torch
import torch.nn as nn
from torch import Tensor
from mmdet.utils import ConfigType, OptMultiConfig
from mmyolo.registry import MODELS
from mmyolo.models.utils import make_divisible, make_round
from mmyolo.models.necks.yolov8_pafpn import YOLOv8PAFPN
@MODELS.register_module()
class YOLOWorldPAFPN(YOLOv8PAFPN):
"""Path Aggregation Network used in YOLO World
Following YOLOv8 PAFPN, including text to image fusion
"""
def __init__(self,
in_channels: List[int],
out_channels: Union[List[int], int],
guide_channels: int,
embed_channels: List[int],
num_heads: List[int],
deepen_factor: float = 1.0,
widen_factor: float = 1.0,
num_csp_blocks: int = 3,
freeze_all: bool = False,
block_cfg: ConfigType = dict(type='CSPLayerWithTwoConv'),
norm_cfg: ConfigType = dict(type='BN',
momentum=0.03,
eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
init_cfg: OptMultiConfig = None) -> None:
self.guide_channels = guide_channels
self.embed_channels = embed_channels
self.num_heads = num_heads
self.block_cfg = block_cfg
super().__init__(in_channels=in_channels,
out_channels=out_channels,
deepen_factor=deepen_factor,
widen_factor=widen_factor,
num_csp_blocks=num_csp_blocks,
freeze_all=freeze_all,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
init_cfg=init_cfg)
def build_top_down_layer(self, idx: int) -> nn.Module:
"""build top down layer.
Args:
idx (int): layer idx.
Returns:
nn.Module: The top down layer.
"""
block_cfg = copy.deepcopy(self.block_cfg)
block_cfg.update(
dict(in_channels=make_divisible(
(self.in_channels[idx - 1] + self.in_channels[idx]),
self.widen_factor),
out_channels=make_divisible(self.out_channels[idx - 1],
self.widen_factor),
guide_channels=self.guide_channels,
embed_channels=make_round(self.embed_channels[idx - 1],
self.widen_factor),
num_heads=make_round(self.num_heads[idx - 1],
self.widen_factor),
num_blocks=make_round(self.num_csp_blocks,
self.deepen_factor),
add_identity=False,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
return MODELS.build(block_cfg)
def build_bottom_up_layer(self, idx: int) -> nn.Module:
"""build bottom up layer.
Args:
idx (int): layer idx.
Returns:
nn.Module: The bottom up layer.
"""
block_cfg = copy.deepcopy(self.block_cfg)
block_cfg.update(
dict(in_channels=make_divisible(
(self.out_channels[idx] + self.out_channels[idx + 1]),
self.widen_factor),
out_channels=make_divisible(self.out_channels[idx + 1],
self.widen_factor),
guide_channels=self.guide_channels,
embed_channels=make_round(self.embed_channels[idx + 1],
self.widen_factor),
num_heads=make_round(self.num_heads[idx + 1],
self.widen_factor),
num_blocks=make_round(self.num_csp_blocks,
self.deepen_factor),
add_identity=False,
norm_cfg=self.norm_cfg,
act_cfg=self.act_cfg))
return MODELS.build(block_cfg)
def forward(self, img_feats: List[Tensor], txt_feats: Tensor) -> tuple:
"""Forward function.
including multi-level image features, text features: BxLxD
"""
assert len(img_feats) == len(self.in_channels)
# reduce layers
reduce_outs = []
for idx in range(len(self.in_channels)):
reduce_outs.append(self.reduce_layers[idx](img_feats[idx]))
# top-down path
inner_outs = [reduce_outs[-1]]
for idx in range(len(self.in_channels) - 1, 0, -1):
feat_high = inner_outs[0]
feat_low = reduce_outs[idx - 1]
upsample_feat = self.upsample_layers[len(self.in_channels) - 1 -
idx](feat_high)
if self.upsample_feats_cat_first:
top_down_layer_inputs = torch.cat([upsample_feat, feat_low], 1)
else:
top_down_layer_inputs = torch.cat([feat_low, upsample_feat], 1)
inner_out = self.top_down_layers[len(self.in_channels) - 1 - idx](
top_down_layer_inputs, txt_feats)
inner_outs.insert(0, inner_out)
# bottom-up path
outs = [inner_outs[0]]
for idx in range(len(self.in_channels) - 1):
feat_low = outs[-1]
feat_high = inner_outs[idx + 1]
downsample_feat = self.downsample_layers[idx](feat_low)
out = self.bottom_up_layers[idx](torch.cat(
[downsample_feat, feat_high], 1), txt_feats)
outs.append(out)
# out_layers
results = []
for idx in range(len(self.in_channels)):
results.append(self.out_layers[idx](outs[idx]))
return tuple(results)
@MODELS.register_module()
class YOLOWolrdDualPAFPN(YOLOWorldPAFPN):
"""Path Aggregation Network used in YOLO World v8."""
def __init__(self,
in_channels: List[int],
out_channels: Union[List[int], int],
guide_channels: int,
embed_channels: List[int],
num_heads: List[int],
deepen_factor: float = 1.0,
widen_factor: float = 1.0,
num_csp_blocks: int = 3,
freeze_all: bool = False,
text_enhancder: ConfigType = dict(
type='ImagePoolingAttentionModule',
embed_channels=256,
num_heads=8,
pool_size=3),
block_cfg: ConfigType = dict(type='CSPLayerWithTwoConv'),
norm_cfg: ConfigType = dict(type='BN',
momentum=0.03,
eps=0.001),
act_cfg: ConfigType = dict(type='SiLU', inplace=True),
init_cfg: OptMultiConfig = None) -> None:
super().__init__(in_channels=in_channels,
out_channels=out_channels,
guide_channels=guide_channels,
embed_channels=embed_channels,
num_heads=num_heads,
deepen_factor=deepen_factor,
widen_factor=widen_factor,
num_csp_blocks=num_csp_blocks,
freeze_all=freeze_all,
block_cfg=block_cfg,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
init_cfg=init_cfg)
text_enhancder.update(
dict(
image_channels=[int(x * widen_factor) for x in out_channels],
text_channels=guide_channels,
num_feats=len(out_channels),
))
print(text_enhancder)
self.text_enhancer = MODELS.build(text_enhancder)
def forward(self, img_feats: List[Tensor], txt_feats: Tensor) -> tuple:
"""Forward function."""
assert len(img_feats) == len(self.in_channels)
# reduce layers
reduce_outs = []
for idx in range(len(self.in_channels)):
reduce_outs.append(self.reduce_layers[idx](img_feats[idx]))
# top-down path
inner_outs = [reduce_outs[-1]]
for idx in range(len(self.in_channels) - 1, 0, -1):
feat_high = inner_outs[0]
feat_low = reduce_outs[idx - 1]
upsample_feat = self.upsample_layers[len(self.in_channels) - 1 -
idx](feat_high)
if self.upsample_feats_cat_first:
top_down_layer_inputs = torch.cat([upsample_feat, feat_low], 1)
else:
top_down_layer_inputs = torch.cat([feat_low, upsample_feat], 1)
inner_out = self.top_down_layers[len(self.in_channels) - 1 - idx](
top_down_layer_inputs, txt_feats)
inner_outs.insert(0, inner_out)
txt_feats = self.text_enhancer(txt_feats, inner_outs)
# bottom-up path
outs = [inner_outs[0]]
for idx in range(len(self.in_channels) - 1):
feat_low = outs[-1]
feat_high = inner_outs[idx + 1]
downsample_feat = self.downsample_layers[idx](feat_low)
out = self.bottom_up_layers[idx](torch.cat(
[downsample_feat, feat_high], 1), txt_feats)
outs.append(out)
# out_layers
results = []
for idx in range(len(self.in_channels)):
results.append(self.out_layers[idx](outs[idx]))
return tuple(results)