YOLOW / yolo_world /models /losses /dynamic_loss.py
stevengrove
initial commit
186701e
raw
history blame
1.29 kB
# Copyright (c) Tencent Inc. All rights reserved.
from typing import Optional
import torch
import torch.nn as nn
from torch import Tensor
from mmdet.models.losses.mse_loss import mse_loss
from mmyolo.registry import MODELS
@MODELS.register_module()
class CoVMSELoss(nn.Module):
def __init__(self,
dim: int = 0,
reduction: str = 'mean',
loss_weight: float = 1.0,
eps: float = 1e-6) -> None:
super().__init__()
self.dim = dim
self.reduction = reduction
self.loss_weight = loss_weight
self.eps = eps
def forward(self,
pred: Tensor,
weight: Optional[Tensor] = None,
avg_factor: Optional[int] = None,
reduction_override: Optional[str] = None) -> Tensor:
"""Forward function of loss."""
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (
reduction_override if reduction_override else self.reduction)
cov = pred.std(self.dim) / pred.mean(self.dim).clamp(min=self.eps)
target = torch.zeros_like(cov)
loss = self.loss_weight * mse_loss(
cov, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss