|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch import Tensor |
|
|
|
|
|
class DeployFocus(nn.Module): |
|
|
|
def __init__(self, orin_Focus: nn.Module): |
|
super().__init__() |
|
self.__dict__.update(orin_Focus.__dict__) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
batch_size, channel, height, width = x.shape |
|
x = x.reshape(batch_size, channel, -1, 2, width) |
|
x = x.reshape(batch_size, channel, x.shape[2], 2, -1, 2) |
|
half_h = x.shape[2] |
|
half_w = x.shape[4] |
|
x = x.permute(0, 5, 3, 1, 2, 4) |
|
x = x.reshape(batch_size, channel * 4, half_h, half_w) |
|
|
|
return self.conv(x) |
|
|
|
|
|
class NcnnFocus(nn.Module): |
|
|
|
def __init__(self, orin_Focus: nn.Module): |
|
super().__init__() |
|
self.__dict__.update(orin_Focus.__dict__) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
batch_size, c, h, w = x.shape |
|
assert h % 2 == 0 and w % 2 == 0, f'focus for yolox needs even feature\ |
|
height and width, got {(h, w)}.' |
|
|
|
x = x.reshape(batch_size, c * h, 1, w) |
|
_b, _c, _h, _w = x.shape |
|
g = _c // 2 |
|
|
|
x = x.view(_b, g, 2, _h, _w) |
|
x = torch.transpose(x, 1, 2).contiguous() |
|
x = x.view(_b, -1, _h, _w) |
|
|
|
x = x.reshape(_b, c * h * w, 1, 1) |
|
|
|
_b, _c, _h, _w = x.shape |
|
g = _c // 2 |
|
|
|
x = x.view(_b, g, 2, _h, _w) |
|
x = torch.transpose(x, 1, 2).contiguous() |
|
x = x.view(_b, -1, _h, _w) |
|
|
|
x = x.reshape(_b, c * 4, h // 2, w // 2) |
|
|
|
return self.conv(x) |
|
|
|
|
|
class GConvFocus(nn.Module): |
|
|
|
def __init__(self, orin_Focus: nn.Module): |
|
super().__init__() |
|
device = next(orin_Focus.parameters()).device |
|
self.weight1 = torch.tensor([[1., 0], [0, 0]]).expand(3, 1, 2, |
|
2).to(device) |
|
self.weight2 = torch.tensor([[0, 0], [1., 0]]).expand(3, 1, 2, |
|
2).to(device) |
|
self.weight3 = torch.tensor([[0, 1.], [0, 0]]).expand(3, 1, 2, |
|
2).to(device) |
|
self.weight4 = torch.tensor([[0, 0], [0, 1.]]).expand(3, 1, 2, |
|
2).to(device) |
|
self.__dict__.update(orin_Focus.__dict__) |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
conv1 = F.conv2d(x, self.weight1, stride=2, groups=3) |
|
conv2 = F.conv2d(x, self.weight2, stride=2, groups=3) |
|
conv3 = F.conv2d(x, self.weight3, stride=2, groups=3) |
|
conv4 = F.conv2d(x, self.weight4, stride=2, groups=3) |
|
return self.conv(torch.cat([conv1, conv2, conv3, conv4], dim=1)) |
|
|