YOLOW / third_party /mmyolo /demo /video_demo.py
stevengrove
initial commit
186701e
# Copyright (c) OpenMMLab. All rights reserved.
"""Perform MMYOLO inference on a video as:
```shell
wget -P checkpoint https://download.openmmlab.com/mmyolo/v0/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth # noqa: E501, E261.
python demo/video_demo.py \
demo/video_demo.mp4 \
configs/yolov5/yolov5_s-v61_syncbn_fast_8xb16-300e_coco.py \
checkpoint/yolov5_s-v61_syncbn_fast_8xb16-300e_coco_20220918_084700-86e02187.pth \
--out demo_result.mp4
```
"""
import argparse
import cv2
import mmcv
from mmcv.transforms import Compose
from mmdet.apis import inference_detector, init_detector
from mmengine.utils import track_iter_progress
from mmyolo.registry import VISUALIZERS
def parse_args():
parser = argparse.ArgumentParser(description='MMYOLO video demo')
parser.add_argument('video', help='Video file')
parser.add_argument('config', help='Config file')
parser.add_argument('checkpoint', help='Checkpoint file')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--score-thr', type=float, default=0.3, help='Bbox score threshold')
parser.add_argument('--out', type=str, help='Output video file')
parser.add_argument('--show', action='store_true', help='Show video')
parser.add_argument(
'--wait-time',
type=float,
default=1,
help='The interval of show (s), 0 is block')
args = parser.parse_args()
return args
def main():
args = parse_args()
assert args.out or args.show, \
('Please specify at least one operation (save/show the '
'video) with the argument "--out" or "--show"')
# build the model from a config file and a checkpoint file
model = init_detector(args.config, args.checkpoint, device=args.device)
# build test pipeline
model.cfg.test_dataloader.dataset.pipeline[
0].type = 'mmdet.LoadImageFromNDArray'
test_pipeline = Compose(model.cfg.test_dataloader.dataset.pipeline)
# init visualizer
visualizer = VISUALIZERS.build(model.cfg.visualizer)
# the dataset_meta is loaded from the checkpoint and
# then pass to the model in init_detector
visualizer.dataset_meta = model.dataset_meta
video_reader = mmcv.VideoReader(args.video)
video_writer = None
if args.out:
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_writer = cv2.VideoWriter(
args.out, fourcc, video_reader.fps,
(video_reader.width, video_reader.height))
for frame in track_iter_progress(video_reader):
result = inference_detector(model, frame, test_pipeline=test_pipeline)
visualizer.add_datasample(
name='video',
image=frame,
data_sample=result,
draw_gt=False,
show=False,
pred_score_thr=args.score_thr)
frame = visualizer.get_image()
if args.show:
cv2.namedWindow('video', 0)
mmcv.imshow(frame, 'video', args.wait_time)
if args.out:
video_writer.write(frame)
if video_writer:
video_writer.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()