stevengrove
initial commit
186701e
# Copyright (c) OpenMMLab. All rights reserved.
"""Optimize anchor settings on a specific dataset.
This script provides three methods to optimize YOLO anchors including k-means
anchor cluster, differential evolution and v5-k-means. You can use
``--algorithm k-means``, ``--algorithm differential_evolution`` and
``--algorithm v5-k-means`` to switch those methods.
Example:
Use k-means anchor cluster::
python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
--algorithm k-means --input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
--out-dir ${OUT_DIR}
Use differential evolution to optimize anchors::
python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
--algorithm differential_evolution \
--input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
--out-dir ${OUT_DIR}
Use v5-k-means to optimize anchors::
python tools/analysis_tools/optimize_anchors.py ${CONFIG} \
--algorithm v5-k-means \
--input-shape ${INPUT_SHAPE [WIDTH HEIGHT]} \
--prior_match_thr ${PRIOR_MATCH_THR} \
--out-dir ${OUT_DIR}
"""
import argparse
import os.path as osp
import random
from typing import Tuple
import numpy as np
import torch
from mmdet.structures.bbox import (bbox_cxcywh_to_xyxy, bbox_overlaps,
bbox_xyxy_to_cxcywh)
from mmdet.utils import replace_cfg_vals, update_data_root
from mmengine.config import Config
from mmengine.fileio import dump
from mmengine.logging import MMLogger
from mmengine.registry import init_default_scope
from mmengine.utils import ProgressBar
from scipy.optimize import differential_evolution
from torch import Tensor
from mmyolo.registry import DATASETS
try:
from scipy.cluster.vq import kmeans
except ImportError:
kmeans = None
def parse_args():
parser = argparse.ArgumentParser(description='Optimize anchor parameters.')
parser.add_argument('config', help='Train config file path.')
parser.add_argument(
'--input-shape',
type=int,
nargs='+',
default=[640, 640],
help='input image size, represent [width, height]')
parser.add_argument(
'--algorithm',
default='DE',
help='Algorithm used for anchor optimizing.'
'Support k-means and differential_evolution for YOLO,'
'and v5-k-means is special for YOLOV5.')
parser.add_argument(
'--iters',
default=1000,
type=int,
help='Maximum iterations for optimizer.')
parser.add_argument(
'--prior-match-thr',
default=4.0,
type=float,
help='anchor-label `gt_filter_sizes` ratio threshold '
'hyperparameter used for training, default=4.0, this '
'parameter is unique to v5-k-means')
parser.add_argument(
'--mutation-args',
type=float,
nargs='+',
default=[0.9, 0.1],
help='paramter of anchor optimize method genetic algorithm, '
'represent [prob, sigma], this parameter is unique to v5-k-means')
parser.add_argument(
'--augment-args',
type=float,
nargs='+',
default=[0.9, 1.1],
help='scale factor of box size augment when metric box and anchor, '
'represent [min, max], this parameter is unique to v5-k-means')
parser.add_argument(
'--device', default='cuda:0', help='Device used for calculating.')
parser.add_argument(
'--out-dir',
default=None,
type=str,
help='Path to save anchor optimize result.')
args = parser.parse_args()
return args
class BaseAnchorOptimizer:
"""Base class for anchor optimizer.
Args:
dataset (obj:`Dataset`): Dataset object.
input_shape (list[int]): Input image shape of the model.
Format in [width, height].
num_anchor_per_level (list[int]) : Number of anchors for each level.
logger (obj:`logging.Logger`): The logger for logging.
device (str, optional): Device used for calculating.
Default: 'cuda:0'
out_dir (str, optional): Path to save anchor optimize result.
Default: None
"""
def __init__(self,
dataset,
input_shape,
num_anchor_per_level,
logger,
device='cuda:0',
out_dir=None):
self.dataset = dataset
self.input_shape = input_shape
self.num_anchor_per_level = num_anchor_per_level
self.num_anchors = sum(num_anchor_per_level)
self.logger = logger
self.device = device
self.out_dir = out_dir
bbox_whs, img_shapes = self.get_whs_and_shapes()
ratios = img_shapes.max(1, keepdims=True) / np.array([input_shape])
# resize to input shape
self.bbox_whs = bbox_whs / ratios
def get_whs_and_shapes(self):
"""Get widths and heights of bboxes and shapes of images.
Returns:
tuple[np.ndarray]: Array of bbox shapes and array of image
shapes with shape (num_bboxes, 2) in [width, height] format.
"""
self.logger.info('Collecting bboxes from annotation...')
bbox_whs = []
img_shapes = []
prog_bar = ProgressBar(len(self.dataset))
for idx in range(len(self.dataset)):
data_info = self.dataset.get_data_info(idx)
img_shape = np.array([data_info['width'], data_info['height']])
gt_instances = data_info['instances']
for instance in gt_instances:
bbox = np.array(instance['bbox'])
gt_filter_sizes = bbox[2:4] - bbox[0:2]
img_shapes.append(img_shape)
bbox_whs.append(gt_filter_sizes)
prog_bar.update()
print('\n')
bbox_whs = np.array(bbox_whs)
img_shapes = np.array(img_shapes)
self.logger.info(f'Collected {bbox_whs.shape[0]} bboxes.')
return bbox_whs, img_shapes
def get_zero_center_bbox_tensor(self):
"""Get a tensor of bboxes centered at (0, 0).
Returns:
Tensor: Tensor of bboxes with shape (num_bboxes, 4)
in [xmin, ymin, xmax, ymax] format.
"""
whs = torch.from_numpy(self.bbox_whs).to(
self.device, dtype=torch.float32)
bboxes = bbox_cxcywh_to_xyxy(
torch.cat([torch.zeros_like(whs), whs], dim=1))
return bboxes
def optimize(self):
raise NotImplementedError
def save_result(self, anchors, path=None):
anchor_results = []
start = 0
for num in self.num_anchor_per_level:
end = num + start
anchor_results.append([(round(w), round(h))
for w, h in anchors[start:end]])
start = end
self.logger.info(f'Anchor optimize result:{anchor_results}')
if path:
json_path = osp.join(path, 'anchor_optimize_result.json')
dump(anchor_results, json_path)
self.logger.info(f'Result saved in {json_path}')
class YOLOKMeansAnchorOptimizer(BaseAnchorOptimizer):
r"""YOLO anchor optimizer using k-means. Code refer to `AlexeyAB/darknet.
<https://github.com/AlexeyAB/darknet/blob/master/src/detector.c>`_.
Args:
iters (int): Maximum iterations for k-means.
"""
def __init__(self, iters, **kwargs):
super().__init__(**kwargs)
self.iters = iters
def optimize(self):
anchors = self.kmeans_anchors()
self.save_result(anchors, self.out_dir)
def kmeans_anchors(self):
self.logger.info(
f'Start cluster {self.num_anchors} YOLO anchors with K-means...')
bboxes = self.get_zero_center_bbox_tensor()
cluster_center_idx = torch.randint(
0, bboxes.shape[0], (self.num_anchors, )).to(self.device)
assignments = torch.zeros((bboxes.shape[0], )).to(self.device)
cluster_centers = bboxes[cluster_center_idx]
if self.num_anchors == 1:
cluster_centers = self.kmeans_maximization(bboxes, assignments,
cluster_centers)
anchors = bbox_xyxy_to_cxcywh(cluster_centers)[:, 2:].cpu().numpy()
anchors = sorted(anchors, key=lambda x: x[0] * x[1])
return anchors
prog_bar = ProgressBar(self.iters)
for i in range(self.iters):
converged, assignments = self.kmeans_expectation(
bboxes, assignments, cluster_centers)
if converged:
self.logger.info(f'K-means process has converged at iter {i}.')
break
cluster_centers = self.kmeans_maximization(bboxes, assignments,
cluster_centers)
prog_bar.update()
print('\n')
avg_iou = bbox_overlaps(bboxes,
cluster_centers).max(1)[0].mean().item()
anchors = bbox_xyxy_to_cxcywh(cluster_centers)[:, 2:].cpu().numpy()
anchors = sorted(anchors, key=lambda x: x[0] * x[1])
self.logger.info(f'Anchor cluster finish. Average IOU: {avg_iou}')
return anchors
def kmeans_maximization(self, bboxes, assignments, centers):
"""Maximization part of EM algorithm(Expectation-Maximization)"""
new_centers = torch.zeros_like(centers)
for i in range(centers.shape[0]):
mask = (assignments == i)
if mask.sum():
new_centers[i, :] = bboxes[mask].mean(0)
return new_centers
def kmeans_expectation(self, bboxes, assignments, centers):
"""Expectation part of EM algorithm(Expectation-Maximization)"""
ious = bbox_overlaps(bboxes, centers)
closest = ious.argmax(1)
converged = (closest == assignments).all()
return converged, closest
class YOLOV5KMeansAnchorOptimizer(BaseAnchorOptimizer):
r"""YOLOv5 anchor optimizer using shape k-means.
Code refer to `ultralytics/yolov5.
<https://github.com/ultralytics/yolov5/blob/master/utils/autoanchor.py>`_.
Args:
iters (int): Maximum iterations for k-means.
prior_match_thr (float): anchor-label width height
ratio threshold hyperparameter.
"""
def __init__(self,
iters,
prior_match_thr=4.0,
mutation_args=[0.9, 0.1],
augment_args=[0.9, 1.1],
**kwargs):
super().__init__(**kwargs)
self.iters = iters
self.prior_match_thr = prior_match_thr
[self.mutation_prob, self.mutation_sigma] = mutation_args
[self.augment_min, self.augment_max] = augment_args
def optimize(self):
self.logger.info(
f'Start cluster {self.num_anchors} YOLOv5 anchors with K-means...')
bbox_whs = torch.from_numpy(self.bbox_whs).to(
self.device, dtype=torch.float32)
anchors = self.anchor_generate(
bbox_whs,
num=self.num_anchors,
img_size=self.input_shape[0],
prior_match_thr=self.prior_match_thr,
iters=self.iters)
best_ratio, mean_matched = self.anchor_metric(bbox_whs, anchors)
self.logger.info(f'{mean_matched:.2f} anchors/target {best_ratio:.3f} '
'Best Possible Recall (BPR). ')
self.save_result(anchors.tolist(), self.out_dir)
def anchor_generate(self,
box_size: Tensor,
num: int = 9,
img_size: int = 640,
prior_match_thr: float = 4.0,
iters: int = 1000) -> Tensor:
"""cluster boxes metric with anchors.
Args:
box_size (Tensor): The size of the bxes, which shape is
(box_num, 2),the number 2 means width and height.
num (int): number of anchors.
img_size (int): image size used for training
prior_match_thr (float): width/height ratio threshold
used for training
iters (int): iterations to evolve anchors using genetic algorithm
Returns:
anchors (Tensor): kmeans evolved anchors
"""
thr = 1 / prior_match_thr
# step1: filter small bbox
box_size = self._filter_box(box_size)
assert num <= len(box_size)
# step2: init anchors
if kmeans:
try:
self.logger.info(
'beginning init anchors with scipy kmeans method')
# sigmas for whitening
sigmas = box_size.std(0).cpu().numpy()
anchors = kmeans(
box_size.cpu().numpy() / sigmas, num, iter=30)[0] * sigmas
# kmeans may return fewer points than requested
# if width/height is insufficient or too similar
assert num == len(anchors)
except Exception:
self.logger.warning(
'scipy kmeans method cannot get enough points '
'because of width/height is insufficient or too similar, '
'now switching strategies from kmeans to random init.')
anchors = np.sort(np.random.rand(num * 2)).reshape(
num, 2) * img_size
else:
self.logger.info(
'cannot found scipy package, switching strategies from kmeans '
'to random init, you can install scipy package to '
'get better anchor init')
anchors = np.sort(np.random.rand(num * 2)).reshape(num,
2) * img_size
self.logger.info('init done, beginning evolve anchors...')
# sort small to large
anchors = torch.tensor(anchors[np.argsort(anchors.prod(1))]).to(
box_size.device, dtype=torch.float32)
# step3: evolve anchors use Genetic Algorithm
prog_bar = ProgressBar(iters)
fitness = self._anchor_fitness(box_size, anchors, thr)
cluster_shape = anchors.shape
for _ in range(iters):
mutate_result = np.ones(cluster_shape)
# mutate until a change occurs (prevent duplicates)
while (mutate_result == 1).all():
# mutate_result is scale factor of anchors, between 0.3 and 3
mutate_result = (
(np.random.random(cluster_shape) < self.mutation_prob) *
random.random() * np.random.randn(*cluster_shape) *
self.mutation_sigma + 1).clip(0.3, 3.0)
mutate_result = torch.from_numpy(mutate_result).to(box_size.device)
new_anchors = (anchors.clone() * mutate_result).clip(min=2.0)
new_fitness = self._anchor_fitness(box_size, new_anchors, thr)
if new_fitness > fitness:
fitness = new_fitness
anchors = new_anchors.clone()
prog_bar.update()
print('\n')
# sort small to large
anchors = anchors[torch.argsort(anchors.prod(1))]
self.logger.info(f'Anchor cluster finish. fitness = {fitness:.4f}')
return anchors
def anchor_metric(self,
box_size: Tensor,
anchors: Tensor,
threshold: float = 4.0) -> Tuple:
"""compute boxes metric with anchors.
Args:
box_size (Tensor): The size of the bxes, which shape
is (box_num, 2), the number 2 means width and height.
anchors (Tensor): The size of the bxes, which shape
is (anchor_num, 2), the number 2 means width and height.
threshold (float): the compare threshold of ratio
Returns:
Tuple: a tuple of metric result, best_ratio_mean and mean_matched
"""
# step1: augment scale
# According to the uniform distribution,the scaling scale between
# augment_min and augment_max is randomly generated
scale = np.random.uniform(
self.augment_min, self.augment_max, size=(box_size.shape[0], 1))
box_size = torch.tensor(
np.array(
[l[:, ] * s for s, l in zip(scale,
box_size.cpu().numpy())])).to(
box_size.device,
dtype=torch.float32)
# step2: calculate ratio
min_ratio, best_ratio = self._metric(box_size, anchors)
mean_matched = (min_ratio > 1 / threshold).float().sum(1).mean()
best_ratio_mean = (best_ratio > 1 / threshold).float().mean()
return best_ratio_mean, mean_matched
def _filter_box(self, box_size: Tensor) -> Tensor:
small_cnt = (box_size < 3.0).any(1).sum()
if small_cnt:
self.logger.warning(
f'Extremely small objects found: {small_cnt} '
f'of {len(box_size)} labels are <3 pixels in size')
# filter > 2 pixels
filter_sizes = box_size[(box_size >= 2.0).any(1)]
return filter_sizes
def _anchor_fitness(self, box_size: Tensor, anchors: Tensor, thr: float):
"""mutation fitness."""
_, best = self._metric(box_size, anchors)
return (best * (best > thr).float()).mean()
def _metric(self, box_size: Tensor, anchors: Tensor) -> Tuple:
"""compute boxes metric with anchors.
Args:
box_size (Tensor): The size of the bxes, which shape is
(box_num, 2), the number 2 means width and height.
anchors (Tensor): The size of the bxes, which shape is
(anchor_num, 2), the number 2 means width and height.
Returns:
Tuple: a tuple of metric result, min_ratio and best_ratio
"""
# ratio means the (width_1/width_2 and height_1/height_2) ratio of each
# box and anchor, the ratio shape is torch.Size([box_num,anchor_num,2])
ratio = box_size[:, None] / anchors[None]
# min_ratio records the min ratio of each box with all anchor,
# min_ratio.shape is torch.Size([box_num,anchor_num])
# notice:
# smaller ratio means worse shape-match between boxes and anchors
min_ratio = torch.min(ratio, 1 / ratio).min(2)[0]
# find the best shape-match ratio for each box
# box_best_ratio.shape is torch.Size([box_num])
best_ratio = min_ratio.max(1)[0]
return min_ratio, best_ratio
class YOLODEAnchorOptimizer(BaseAnchorOptimizer):
"""YOLO anchor optimizer using differential evolution algorithm.
Args:
iters (int): Maximum iterations for k-means.
strategy (str): The differential evolution strategy to use.
Should be one of:
- 'best1bin'
- 'best1exp'
- 'rand1exp'
- 'randtobest1exp'
- 'currenttobest1exp'
- 'best2exp'
- 'rand2exp'
- 'randtobest1bin'
- 'currenttobest1bin'
- 'best2bin'
- 'rand2bin'
- 'rand1bin'
Default: 'best1bin'.
population_size (int): Total population size of evolution algorithm.
Default: 15.
convergence_thr (float): Tolerance for convergence, the
optimizing stops when ``np.std(pop) <= abs(convergence_thr)
+ convergence_thr * np.abs(np.mean(population_energies))``,
respectively. Default: 0.0001.
mutation (tuple[float]): Range of dithering randomly changes the
mutation constant. Default: (0.5, 1).
recombination (float): Recombination constant of crossover probability.
Default: 0.7.
"""
def __init__(self,
iters,
strategy='best1bin',
population_size=15,
convergence_thr=0.0001,
mutation=(0.5, 1),
recombination=0.7,
**kwargs):
super().__init__(**kwargs)
self.iters = iters
self.strategy = strategy
self.population_size = population_size
self.convergence_thr = convergence_thr
self.mutation = mutation
self.recombination = recombination
def optimize(self):
anchors = self.differential_evolution()
self.save_result(anchors, self.out_dir)
def differential_evolution(self):
bboxes = self.get_zero_center_bbox_tensor()
bounds = []
for i in range(self.num_anchors):
bounds.extend([(0, self.input_shape[0]), (0, self.input_shape[1])])
result = differential_evolution(
func=self.avg_iou_cost,
bounds=bounds,
args=(bboxes, ),
strategy=self.strategy,
maxiter=self.iters,
popsize=self.population_size,
tol=self.convergence_thr,
mutation=self.mutation,
recombination=self.recombination,
updating='immediate',
disp=True)
self.logger.info(
f'Anchor evolution finish. Average IOU: {1 - result.fun}')
anchors = [(w, h) for w, h in zip(result.x[::2], result.x[1::2])]
anchors = sorted(anchors, key=lambda x: x[0] * x[1])
return anchors
@staticmethod
def avg_iou_cost(anchor_params, bboxes):
assert len(anchor_params) % 2 == 0
anchor_whs = torch.tensor(
[[w, h]
for w, h in zip(anchor_params[::2], anchor_params[1::2])]).to(
bboxes.device, dtype=bboxes.dtype)
anchor_boxes = bbox_cxcywh_to_xyxy(
torch.cat([torch.zeros_like(anchor_whs), anchor_whs], dim=1))
ious = bbox_overlaps(bboxes, anchor_boxes)
max_ious, _ = ious.max(1)
cost = 1 - max_ious.mean().item()
return cost
def main():
logger = MMLogger.get_current_instance()
args = parse_args()
cfg = args.config
cfg = Config.fromfile(cfg)
# replace the ${key} with the value of cfg.key
cfg = replace_cfg_vals(cfg)
# update data root according to MMDET_DATASETS
update_data_root(cfg)
init_default_scope(cfg.get('default_scope', 'mmyolo'))
input_shape = args.input_shape
assert len(input_shape) == 2
anchor_type = cfg.model.bbox_head.prior_generator.type
assert anchor_type == 'mmdet.YOLOAnchorGenerator', \
f'Only support optimize YOLOAnchor, but get {anchor_type}.'
base_sizes = cfg.model.bbox_head.prior_generator.base_sizes
num_anchor_per_level = [len(sizes) for sizes in base_sizes]
train_data_cfg = cfg.train_dataloader
while 'dataset' in train_data_cfg:
train_data_cfg = train_data_cfg['dataset']
dataset = DATASETS.build(train_data_cfg)
if args.algorithm == 'k-means':
optimizer = YOLOKMeansAnchorOptimizer(
dataset=dataset,
input_shape=input_shape,
device=args.device,
num_anchor_per_level=num_anchor_per_level,
iters=args.iters,
logger=logger,
out_dir=args.out_dir)
elif args.algorithm == 'DE':
optimizer = YOLODEAnchorOptimizer(
dataset=dataset,
input_shape=input_shape,
device=args.device,
num_anchor_per_level=num_anchor_per_level,
iters=args.iters,
logger=logger,
out_dir=args.out_dir)
elif args.algorithm == 'v5-k-means':
optimizer = YOLOV5KMeansAnchorOptimizer(
dataset=dataset,
input_shape=input_shape,
device=args.device,
num_anchor_per_level=num_anchor_per_level,
iters=args.iters,
prior_match_thr=args.prior_match_thr,
mutation_args=args.mutation_args,
augment_args=args.augment_args,
logger=logger,
out_dir=args.out_dir)
else:
raise NotImplementedError(
f'Only support k-means and differential_evolution, '
f'but get {args.algorithm}')
optimizer.optimize()
if __name__ == '__main__':
main()