YOLOW / tools /dockerfiles /Dockerfile_runtime
stevengrove
initial commit
186701e
ARG PYTORCH="1.9.0"
ARG CUDA="11.1"
ARG CUDNN="8"
FROM pytorch/pytorch:${PYTORCH}-cuda${CUDA}-cudnn${CUDNN}-devel
ENV TORCH_CUDA_ARCH_LIST="6.0 6.1 7.0 7.5 8.0 8.6+PTX" \
TORCH_NVCC_FLAGS="-Xfatbin -compress-all" \
CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \
FORCE_CUDA="1"
RUN rm /etc/apt/sources.list.d/cuda.list \
&& rm /etc/apt/sources.list.d/nvidia-ml.list \
&& apt-key del 7fa2af80 \
&& apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub \
&& apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64/7fa2af80.pub
# (Optional)
# RUN sed -i 's/http:\/\/archive.ubuntu.com\/ubuntu\//http:\/\/mirrors.aliyun.com\/ubuntu\//g' /etc/apt/sources.list && \
# pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
RUN apt-get update \
&& apt-get install -y ffmpeg libsm6 libxext6 git ninja-build libglib2.0-0 libxrender-dev \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
# Install MMEngine, MMCV, MMDet and MMYolo
RUN pip install --no-cache-dir openmim && \
mim install --no-cache-dir "mmengine>=0.6.0" "mmcv>=2.0.0rc4,<2.1.0" "mmdet>=3.0.0,<4.0.0" \
mim install --no-cache-dir "mmyolo>=0.6.0"
# Install other requirements
RUN pip install --no-cache-dir transformers tokenizer gradio sentencepiece