Spaces:
Sleeping
Sleeping
title: salad bowl (vampnet) | |
emoji: 🥗 | |
colorFrom: yellow | |
colorTo: green | |
sdk: gradio | |
sdk_version: 4.43.0 | |
python_version: 3.9.17 | |
app_file: app.py | |
pinned: false | |
license: cc-by-nc-4.0 | |
# VampNet | |
This repository contains recipes for training generative music models on top of the Descript Audio Codec. | |
# Setting up | |
**Requires Python 3.9**. | |
you'll need a Python 3.9 environment to run VampNet. This is due to a [known issue with madmom](https://github.com/hugofloresgarcia/vampnet/issues/15). | |
(for example, using conda) | |
```bash | |
conda create -n vampnet python=3.9 | |
conda activate vampnet | |
``` | |
install VampNet | |
```bash | |
git clone https://github.com/hugofloresgarcia/vampnet.git | |
pip install -e ./vampnet | |
``` | |
# Usage | |
quick start! | |
```python | |
import random | |
import vampnet | |
import audiotools as at | |
# load the default vampnet model | |
interface = vampnet.interface.Interface.default() | |
# list available finetuned models | |
finetuned_model_choices = interface.available_models() | |
print(f"available finetuned models: {finetuned_model_choices}") | |
# pick a random finetuned model | |
model_choice = random.choice(finetuned_model_choices) | |
print(f"choosing model: {model_choice}") | |
# load a finetuned model | |
interface.load_finetuned(model_choice) | |
# load an example audio file | |
signal = at.AudioSignal("assets/example.wav") | |
# get the tokens for the audio | |
codes = interface.encode(signal) | |
# build a mask for the audio | |
mask = interface.build_mask( | |
codes, signal, | |
periodic_prompt=7, | |
upper_codebook_mask=3, | |
) | |
# generate the output tokens | |
output_tokens = interface.vamp( | |
codes, mask, return_mask=False, | |
temperature=1.0, | |
typical_filtering=True, | |
) | |
# convert them to a signal | |
output_signal = interface.decode(output_tokens) | |
# save the output signal | |
output_signal.write("scratch/output.wav") | |
``` | |
## Launching the Gradio Interface | |
You can launch a gradio UI to play with vampnet. | |
```bash | |
python app.py --args.load conf/interface.yml --Interface.device cuda | |
``` | |
# Training / Fine-tuning | |
## Training a model | |
To train a model, run the following script: | |
```bash | |
python scripts/exp/train.py --args.load conf/vampnet.yml --save_path /path/to/checkpoints | |
``` | |
for multi-gpu training, use torchrun: | |
```bash | |
torchrun --nproc_per_node gpu scripts/exp/train.py --args.load conf/vampnet.yml --save_path path/to/ckpt | |
``` | |
You can edit `conf/vampnet.yml` to change the dataset paths or any training hyperparameters. | |
For coarse2fine models, you can use `conf/c2f.yml` as a starting configuration. | |
See `python scripts/exp/train.py -h` for a list of options. | |
## Debugging training | |
To debug training, it's easier to debug with 1 gpu and 0 workers | |
```bash | |
CUDA_VISIBLE_DEVICES=0 python -m pdb scripts/exp/train.py --args.load conf/vampnet.yml --save_path /path/to/checkpoints --num_workers 0 | |
``` | |
## Fine-tuning | |
To fine-tune a model, use the script in `scripts/exp/fine_tune.py` to generate 3 configuration files: `c2f.yml`, `coarse.yml`, and `interface.yml`. | |
The first two are used to fine-tune the coarse and fine models, respectively. The last one is used to launch the gradio interface. | |
```bash | |
python scripts/exp/fine_tune.py "/path/to/audio1.mp3 /path/to/audio2/ /path/to/audio3.wav" <fine_tune_name> | |
``` | |
This will create a folder under `conf/<fine_tune_name>/` with the 3 configuration files. | |
The save_paths will be set to `runs/<fine_tune_name>/coarse` and `runs/<fine_tune_name>/c2f`. | |
launch the coarse job: | |
```bash | |
python scripts/exp/train.py --args.load conf/generated/<fine_tune_name>/coarse.yml | |
``` | |
this will save the coarse model to `runs/<fine_tune_name>/coarse/ckpt/best/`. | |
launch the c2f job: | |
```bash | |
python scripts/exp/train.py --args.load conf/generated/<fine_tune_name>/c2f.yml | |
``` | |
## A note on argbind | |
This repository relies on [argbind](https://github.com/pseeth/argbind) to manage CLIs and config files. | |
Config files are stored in the `conf/` folder. | |
### Take a look at the pretrained models | |
All the pretrained models (trained by hugo) are stored here: https://huggingface.co/hugggof/vampnet | |
### Licensing for Pretrained Models: | |
The weights for the models are licensed [`CC BY-NC-SA 4.0`](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ml). Likewise, any VampNet models fine-tuned on the pretrained models are also licensed [`CC BY-NC-SA 4.0`](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ml). | |
Download the pretrained models from [this link](https://zenodo.org/record/8136629). Then, extract the models to the `models/` folder. | |