Spaces:
Sleeping
Sleeping
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions | |
from PIL import Image | |
from tensorflow.keras.preprocessing import image | |
# Load the pre-trained ResNet50 model | |
model = tf.keras.applications.ResNet50(weights='imagenet', input_shape=(224, 224, 3)) | |
# Function to preprocess the input image | |
def load_and_preprocess_image(img_path): | |
img = Image.open(img_path) | |
img = img.resize((224, 224)) # Resize the image to the size expected by the model | |
img_array = image.img_to_array(img) # Convert the image to a numpy array | |
img_array = np.expand_dims(img_array, axis=0) # Add a batch dimension (1, 224, 224, 3) | |
img_array = preprocess_input(img_array) # Preprocess the image (normalize) | |
return img_array | |
# Prediction function | |
def predict(image): | |
# Preprocess the image | |
image = load_and_preprocess_image(image) | |
# Get the model's raw prediction (logits) | |
logits = model.predict(image) | |
# Decode the predictions to human-readable labels | |
predicted_class = decode_predictions(logits, top=1)[0][0][1] | |
confidence = decode_predictions(logits, top=1)[0][0][2] * 100 | |
if predicted_class != 'golden_retriever': | |
predicted_class = "FLAG{3993}" | |
return predicted_class, confidence | |
# Gradio interface | |
iface = gr.Interface( | |
fn=predict, # Function to call for prediction | |
inputs=gr.Image(type="filepath", label="Upload an image"), # Input: Image upload | |
outputs=gr.Textbox(label="Predicted Class"), # Output: Text showing predicted class | |
title="Vault Challenge 5 - PGD", # Title of the interface | |
description="Upload an image, and the model will predict the class. Try to fool the model into predicting the FLAG using PGD!" | |
) | |
# Launch the Gradio interface | |
iface.launch() |