File size: 12,215 Bytes
1e019a9 f5ac567 1e019a9 f5ac567 58ac12b 540601d f5ac567 58ac12b f5ac567 58ac12b f5ac567 58ac12b f5ac567 dc1e233 f5ac567 1e019a9 f5ac567 540601d f5ac567 540601d f5ac567 540601d f5ac567 540601d f5ac567 1e019a9 f5ac567 540601d f5ac567 540601d f5ac567 1e019a9 f5ac567 1e019a9 f5ac567 58a73c7 f5ac567 58a73c7 1e019a9 1350d30 1e019a9 1350d30 1e019a9 f785e54 58a73c7 1e019a9 f5ac567 1e019a9 f5ac567 f785e54 ee9f10c f785e54 f5ac567 1e019a9 f5ac567 1e019a9 f5ac567 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os
import torch
import yaml
import numpy as np
import gradio as gr
from einops import rearrange
from functools import partial
from huggingface_hub import hf_hub_download
# pull files from hub
token = os.environ.get("HF_TOKEN", None)
config_path = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL",
filename="config.json", token=token)
checkpoint = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL",
filename='Prithvi_EO_V2_300M_TL.pt', token=token)
model_def = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL",
filename='prithvi_mae.py', token=token)
model_inference = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL",
filename='inference.py', token=token)
os.system(f'cp {model_def} .')
os.system(f'cp {model_inference} .')
from prithvi_mae import PrithviMAE
from inference import process_channel_group, _convert_np_uint8, load_example, run_model
def extract_rgb_imgs(input_img, rec_img, mask_img, channels, mean, std):
""" Wrapper function to save Geotiff images (original, reconstructed, masked) per timestamp.
Args:
input_img: input torch.Tensor with shape (C, T, H, W).
rec_img: reconstructed torch.Tensor with shape (C, T, H, W).
mask_img: mask torch.Tensor with shape (C, T, H, W).
channels: list of indices representing RGB channels.
mean: list of mean values for each band.
std: list of std values for each band.
output_dir: directory where to save outputs.
meta_data: list of dicts with geotiff meta info.
"""
rgb_orig_list = []
rgb_mask_list = []
rgb_pred_list = []
for t in range(input_img.shape[1]):
rgb_orig, rgb_pred = process_channel_group(orig_img=input_img[:, t, :, :],
new_img=rec_img[:, t, :, :],
channels=channels,
mean=mean,
std=std)
rgb_mask = mask_img[channels, t, :, :] * rgb_orig
# extract images
rgb_orig_list.append(_convert_np_uint8(rgb_orig).transpose(1, 2, 0))
rgb_mask_list.append(_convert_np_uint8(rgb_mask).transpose(1, 2, 0))
rgb_pred_list.append(_convert_np_uint8(rgb_pred).transpose(1, 2, 0))
# Add white dummy image values for missing timestamps
dummy = np.ones((20, 20), dtype=np.uint8) * 255
num_dummies = 4 - len(rgb_orig_list)
if num_dummies:
rgb_orig_list.extend([dummy] * num_dummies)
rgb_mask_list.extend([dummy] * num_dummies)
rgb_pred_list.extend([dummy] * num_dummies)
outputs = rgb_orig_list + rgb_mask_list + rgb_pred_list
return outputs
def predict_on_images(data_files: list, config_path: str, checkpoint: str, mask_ratio: float = None):
try:
data_files = [x.name for x in data_files]
print('Path extracted from example')
except:
print('Files submitted through UI')
# Get parameters --------
print('This is the printout', data_files)
with open(config_path, 'r') as f:
config = yaml.safe_load(f)['pretrained_cfg']
batch_size = 8
bands = config['bands']
num_frames = len(data_files)
mean = config['mean']
std = config['std']
coords_encoding = config['coords_encoding']
img_size = config['img_size']
mask_ratio = mask_ratio or config['mask_ratio']
assert num_frames <= 4, "Demo only supports up to four timestamps"
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
print(f"Using {device} device.\n")
# Loading data ---------------------------------------------------------------------------------
input_data, temporal_coords, location_coords, meta_data = load_example(file_paths=data_files, mean=mean, std=std)
if len(temporal_coords) != num_frames and 'time' in coords_encoding:
coords_encoding.pop('time')
if not len(location_coords) and 'location' in coords_encoding:
coords_encoding.pop('location')
# Create model and load checkpoint -------------------------------------------------------------
config.update(
num_frames=num_frames,
coords_encoding=coords_encoding,
)
model = PrithviMAE(**config)
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"\n--> Model has {total_params:,} parameters.\n")
model.to(device)
state_dict = torch.load(checkpoint, map_location=device, weights_only=False)
# discard fixed pos_embedding weight
for k in list(state_dict.keys()):
if 'pos_embed' in k:
del state_dict[k]
model.load_state_dict(state_dict, strict=False)
print(f"Loaded checkpoint from {checkpoint}")
# Running model --------------------------------------------------------------------------------
model.eval()
channels = [bands.index(b) for b in ['B04', 'B03', 'B02']] # BGR -> RGB
# Reflect pad if not divisible by img_size
original_h, original_w = input_data.shape[-2:]
pad_h = img_size - (original_h % img_size)
pad_w = img_size - (original_w % img_size)
input_data = np.pad(input_data, ((0, 0), (0, 0), (0, 0), (0, pad_h), (0, pad_w)), mode='reflect')
# Build sliding window
batch = torch.tensor(input_data, device='cpu')
windows = batch.unfold(3, img_size, img_size).unfold(4, img_size, img_size)
h1, w1 = windows.shape[3:5]
windows = rearrange(windows, 'b c t h1 w1 h w -> (b h1 w1) c t h w', h=img_size, w=img_size)
# Split into batches if number of windows > batch_size
num_batches = windows.shape[0] // batch_size if windows.shape[0] > batch_size else 1
windows = torch.tensor_split(windows, num_batches, dim=0)
# Run model
rec_imgs = []
mask_imgs = []
for x in windows:
temp_coords = torch.Tensor([temporal_coords] * len(x))
loc_coords = torch.Tensor([location_coords[0]] * len(x))
rec_img, mask_img = run_model(model, x, temp_coords, loc_coords, mask_ratio, device)
rec_imgs.append(rec_img)
mask_imgs.append(mask_img)
rec_imgs = torch.concat(rec_imgs, dim=0)
mask_imgs = torch.concat(mask_imgs, dim=0)
# Build images from patches
rec_imgs = rearrange(rec_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)',
h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1)
mask_imgs = rearrange(mask_imgs, '(b h1 w1) c t h w -> b c t (h1 h) (w1 w)',
h=img_size, w=img_size, b=1, c=len(bands), t=num_frames, h1=h1, w1=w1)
# Cut padded images back to original size
rec_imgs_full = rec_imgs[..., :original_h, :original_w]
mask_imgs_full = mask_imgs[..., :original_h, :original_w]
batch_full = batch[..., :original_h, :original_w]
# Build RGB images
for d in meta_data:
d.update(count=3, dtype='uint8', compress='lzw', nodata=0)
outputs = extract_rgb_imgs(batch_full[0, ...], rec_imgs_full[0, ...], mask_imgs_full[0, ...],
channels, mean, std)
print("Done!")
return outputs
run_inference = partial(predict_on_images, config_path=config_path,checkpoint=checkpoint)
with gr.Blocks() as demo:
gr.Markdown(value='# Prithvi-EO-2.0 image reconstruction demo')
gr.Markdown(value='''
Prithvi-EO-2.0 is the second generation EO foundation model developed by the IBM and NASA team.
The temporal ViT is train on 4.2M Harmonised Landsat Sentinel 2 (HLS) samples with four timestamps each, using the Masked AutoEncoder learning strategy.
The model includes spatial and temporal attention across multiple patches and timestamps.
Additionally, temporal and location information is added to the model input via embeddings.
More info about the model are available [here](https://huggingface.co/ibm-nasa-geospatial/Prithvi-EO-2.0-300M-TL).\n
This demo showcases the image reconstruction over one to four timestamps.
The model randomly masks out some proportion of the images and reconstructs them based on the not masked portion of the images.
The reconstructed images are merged with the visible unmasked patches.
We recommend submitting images of size 224 to ~1000 pixels for faster processing time.
Images bigger than 224x224 are processed using a sliding window approach which can lead to artefacts between patches.\n
The user needs to provide the HLS geotiff images, including the following channels in reflectance units: Blue, Green, Red, Narrow NIR, SWIR, SWIR 2.
Optionally, the location information is extracted from the tif files while the temporal information can be provided in the filename in the format `<date>T<time>` or `<year><julian day>T<time>` (HLS format).
Some example images are provided at the end of this page.
''')
with gr.Row():
with gr.Column():
inp_files = gr.Files(elem_id='files')
# inp_slider = gr.Slider(0, 100, value=50, label="Mask ratio", info="Choose ratio of masking between 0 and 100", elem_id='slider'),
btn = gr.Button("Submit")
with gr.Row():
gr.Markdown(value='## Input time series')
gr.Markdown(value='## Masked images')
gr.Markdown(value='## Reconstructed images*')
original = []
masked = []
predicted = []
timestamps = []
for t in range(4):
timestamps.append(gr.Column(visible=t == 0))
with timestamps[t]:
#with gr.Row():
# gr.Markdown(value=f"Timestamp {t+1}")
with gr.Row():
original.append(gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False))
masked.append(gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False))
predicted.append(gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False))
gr.Markdown(value='\* The reconstructed images include the ground truth unmasked patches.')
btn.click(fn=run_inference,
inputs=inp_files,
outputs=original + masked + predicted)
with gr.Row():
gr.Examples(examples=[[[
os.path.join(os.path.dirname(__file__), "examples/Mexico_HLS.S30.T13REM.2018026T173609.v2.0_cropped.tif"),
os.path.join(os.path.dirname(__file__), "examples/Mexico_HLS.S30.T13REM.2018106T172859.v2.0_cropped.tif"),
os.path.join(os.path.dirname(__file__), "examples/Mexico_HLS.S30.T13REM.2018201T172901.v2.0_cropped.tif"),
os.path.join(os.path.dirname(__file__), "examples/Mexico_HLS.S30.T13REM.2018266T173029.v2.0_cropped.tif")
]], [[
os.path.join(os.path.dirname(__file__), "examples/Alaska_HLS.S30.T06VUN.2020305T212629.v2.0_cropped.tif"),
os.path.join(os.path.dirname(__file__), "examples/Alaska_HLS.S30.T06VUN.2021044T212601.v2.0_cropped.tif"),
os.path.join(os.path.dirname(__file__), "examples/Alaska_HLS.S30.T06VUN.2021067T213531.v2.0_cropped.tif"),
os.path.join(os.path.dirname(__file__), "examples/Alaska_HLS.S30.T06VUN.2021067T213531.v2.0_cropped.tif")
]], [[
os.path.join(os.path.dirname(__file__), "examples/Florida_HLS.S30.T17RMP.2019119T155911.v2.0_cropped.tif"),
os.path.join(os.path.dirname(__file__), "examples/Florida_HLS.S30.T17RMP.2019249T155901.v2.0_cropped.tif"),
os.path.join(os.path.dirname(__file__), "examples/Florida_HLS.S30.T17RMP.2019349T160651.v2.0_cropped.tif"),
os.path.join(os.path.dirname(__file__), "examples/Florida_HLS.S30.T17RMP.2020039T160419.v2.0_cropped.tif")
]]],
inputs=inp_files,
outputs=original + masked + predicted,
fn=run_inference,
cache_examples=True
)
def update_visibility(files):
timestamps = [gr.Column(visible=t < len(files)) for t in range(4)]
return timestamps
inp_files.change(update_visibility, inp_files, timestamps)
demo.launch()
|