Spaces:
Runtime error
Runtime error
File size: 4,160 Bytes
af72b72 21c7de8 af72b72 21c7de8 39a6dd6 bcaf154 39a6dd6 af72b72 39a6dd6 af72b72 39a6dd6 21c7de8 39a6dd6 dbb7b85 39a6dd6 21c7de8 39a6dd6 21c7de8 39a6dd6 21c7de8 39a6dd6 21c7de8 39a6dd6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
'''Artist Classifier
prototype
---
- 2022-01-18 jkang first created
'''
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import seaborn as sns
import io
import json
import numpy as np
import skimage.io
from loguru import logger
from huggingface_hub import from_pretrained_keras
import gradio as gr
import tensorflow as tf
tfk = tf.keras
from gradcam_utils import get_img_4d_array, make_gradcam_heatmap, align_image_with_heatmap
# ---------- Settings ----------
ARTIST_META = 'artist.json'
TREND_META = 'trend.json'
EXAMPLES = ['monet.jpg']
# ---------- Logging ----------
logger.add('app.log', mode='a')
logger.info('============================= App restarted =============================')
# ---------- Model ----------
logger.info('loading models...')
artist_model = from_pretrained_keras("jkang/drawing-artist-classifier")
trend_model = from_pretrained_keras("jkang/drawing-artistic-trend-classifier")
logger.info('both models loaded')
def load_json_as_dict(json_file):
with open(json_file, 'r') as f:
out = json.load(f)
return dict(out)
def load_image_as_array(image_file):
img = skimage.io.imread(image_file, as_gray=False, plugin='matplotlib')
if (img.shape[-1] > 3): # if RGBA
img = img[..., :-1]
return img
def load_image_as_tensor(image_file):
img = tf.io.read_file(image_file)
img = tf.io.decode_jpeg(img, channels=3)
return img
def predict(input_image):
img_3d_array = load_image_as_array(input_image)
# img_4d_tensor = load_image_as_tensor(input_image)
img_4d_array = img_3d_array[np.newaxis,...]
logger.info(f'--- {input_image} loaded')
artist2id = load_json_as_dict(ARTIST_META)
trend2id = load_json_as_dict(TREND_META)
id2artist = {artist2id[artist]:artist for artist in artist2id}
id2trend = {trend2id[trend]:trend for trend in trend2id}
# Artist model
a_heatmap, a_pred_id, a_pred_out = make_gradcam_heatmap(artist_model,
img_4d_array,
pred_idx=None)
a_img_pil = align_image_with_heatmap(
img_4d_array, a_heatmap, alpha=alpha, cmap='jet')
a_img = np.asarray(a_img_pil).astype('float32')/255
a_label = id2artist[a_pred_id]
a_prob = a_pred_out[a_pred_id]
# Trend model
t_heatmap, t_pred_id, t_pred_out = make_gradcam_heatmap(trend_model,
img_4d_array,
pred_idx=None)
t_img_pil = align_image_with_heatmap(
img_4d_array, t_heatmap, alpha=alpha, cmap='jet')
t_img = np.asarray(t_img_pil).astype('float32')/255
t_label = id2trend[t_pred_id]
t_prob = t_pred_out[t_pred_id]
with sns.plotting_context('poster', font_scale=0.7):
fig, (ax1, ax2, ax3) = plt.subplots(
1, 3, figsize=(12, 6), facecolor='white')
for ax in (ax1, ax2, ax3):
ax.set_xticks([])
ax.set_yticks([])
ax1.imshow(img_3d_array)
ax2.imshow(a_img)
ax3.imshow(t_img)
ax1.set_title(f'Artist: {artist}\nTrend: {trend}', ha='left', x=0, y=1.05)
ax2.set_title(f'Artist Prediction:\n =>{a_label} ({a_prob:.2f})', ha='left', x=0, y=1.05)
ax3.set_title(f'Trend Prediction:\n =>{t_label} ({t_prob:.2f})', ha='left', x=0, y=1.05)
fig.tight_layout()
buf = io.BytesIO()
fig.save(buf, bbox_inces='tight', fotmat='jpg')
buf.seek(0)
pil_img = Image.open(buf)
plt.close()
logger.info('--- output generated')
return pil_img
iface = gr.Interface(
predict,
title='Predict Artist and Artistic Style of Drawings π¨π¨π»βπ¨ (prototype)',
description='Upload a drawing and the model will predict how likely it seems given 10 artists and their trend/style',
inputs=[
gr.inputs.Image(label='Upload a drawing/image', type='file')
],
outputs=[
gr.outputs.Image(label='Prediction')
],
examples=EXAMPLES,
)
iface.launch(debug=True, enable_queue=True) |