File size: 4,160 Bytes
af72b72
 
 
 
 
 
 
21c7de8
af72b72
 
 
 
21c7de8
39a6dd6
bcaf154
39a6dd6
 
 
af72b72
 
 
 
 
 
39a6dd6
 
 
 
af72b72
39a6dd6
 
 
 
 
 
 
 
 
 
21c7de8
 
 
 
 
39a6dd6
 
dbb7b85
39a6dd6
 
 
 
 
 
 
 
 
 
21c7de8
 
39a6dd6
 
21c7de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39a6dd6
21c7de8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39a6dd6
 
 
21c7de8
39a6dd6
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
'''Artist Classifier

prototype

---
- 2022-01-18 jkang first created
'''
from PIL import Image
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import seaborn as sns

import io
import json
import numpy as np
import skimage.io
from loguru import logger
from huggingface_hub import from_pretrained_keras
import gradio as gr
import tensorflow as tf
tfk = tf.keras

from gradcam_utils import get_img_4d_array, make_gradcam_heatmap, align_image_with_heatmap

# ---------- Settings ----------
ARTIST_META = 'artist.json'
TREND_META = 'trend.json'
EXAMPLES = ['monet.jpg']

# ---------- Logging ----------
logger.add('app.log', mode='a')
logger.info('============================= App restarted =============================')

# ---------- Model ----------
logger.info('loading models...')
artist_model = from_pretrained_keras("jkang/drawing-artist-classifier")
trend_model = from_pretrained_keras("jkang/drawing-artistic-trend-classifier")
logger.info('both models loaded')

def load_json_as_dict(json_file):
    with open(json_file, 'r') as f:
        out = json.load(f)
    return dict(out)

def load_image_as_array(image_file):
    img = skimage.io.imread(image_file, as_gray=False, plugin='matplotlib')
    if (img.shape[-1] > 3):  # if RGBA
        img = img[..., :-1]
    return img

def load_image_as_tensor(image_file):
    img = tf.io.read_file(image_file)
    img = tf.io.decode_jpeg(img, channels=3)
    return img

def predict(input_image):
    img_3d_array = load_image_as_array(input_image)
    # img_4d_tensor = load_image_as_tensor(input_image)
    img_4d_array = img_3d_array[np.newaxis,...]
    logger.info(f'--- {input_image} loaded')
    
    artist2id = load_json_as_dict(ARTIST_META)
    trend2id = load_json_as_dict(TREND_META)
    id2artist = {artist2id[artist]:artist for artist in artist2id}
    id2trend = {trend2id[trend]:trend for trend in trend2id}
    
    # Artist model
    a_heatmap, a_pred_id, a_pred_out = make_gradcam_heatmap(artist_model,
                                                            img_4d_array,
                                                            pred_idx=None)
    a_img_pil = align_image_with_heatmap(
        img_4d_array, a_heatmap, alpha=alpha, cmap='jet')
    a_img = np.asarray(a_img_pil).astype('float32')/255
    a_label = id2artist[a_pred_id]
    a_prob = a_pred_out[a_pred_id]

    # Trend model
    t_heatmap, t_pred_id, t_pred_out = make_gradcam_heatmap(trend_model,
                                                            img_4d_array,
                                                            pred_idx=None)
    
    t_img_pil = align_image_with_heatmap(
        img_4d_array, t_heatmap, alpha=alpha, cmap='jet')
    t_img = np.asarray(t_img_pil).astype('float32')/255
    t_label = id2trend[t_pred_id]
    t_prob = t_pred_out[t_pred_id]
    
    with sns.plotting_context('poster', font_scale=0.7):
        fig, (ax1, ax2, ax3) = plt.subplots(
            1, 3, figsize=(12, 6), facecolor='white')
        for ax in (ax1, ax2, ax3):
            ax.set_xticks([])
            ax.set_yticks([])

        ax1.imshow(img_3d_array)
        ax2.imshow(a_img)
        ax3.imshow(t_img)

        ax1.set_title(f'Artist: {artist}\nTrend: {trend}', ha='left', x=0, y=1.05)
        ax2.set_title(f'Artist Prediction:\n =>{a_label} ({a_prob:.2f})', ha='left', x=0, y=1.05)
        ax3.set_title(f'Trend Prediction:\n =>{t_label} ({t_prob:.2f})', ha='left', x=0, y=1.05)
        fig.tight_layout()
        
    buf = io.BytesIO()
    fig.save(buf, bbox_inces='tight', fotmat='jpg')
    buf.seek(0)
    pil_img = Image.open(buf)
    plt.close()
    logger.info('--- output generated')
    return pil_img

iface = gr.Interface(
    predict,
    title='Predict Artist and Artistic Style of Drawings πŸŽ¨πŸ‘¨πŸ»β€πŸŽ¨ (prototype)',
    description='Upload a drawing and the model will predict how likely it seems given 10 artists and their trend/style',
    inputs=[
        gr.inputs.Image(label='Upload a drawing/image', type='file')
    ],
    outputs=[
        gr.outputs.Image(label='Prediction')
    ],
    examples=EXAMPLES,
)
iface.launch(debug=True, enable_queue=True)