File size: 6,314 Bytes
6638ae9
 
a11fc96
6638ae9
 
 
 
a11fc96
6638ae9
 
 
 
 
 
 
 
 
 
a11fc96
 
 
 
 
bd6a6a5
 
 
 
 
 
 
60e968d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a11fc96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import os

import gradio as gr
from gradio_imageslider import ImageSlider
import argparse
from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype
import numpy as np
import torch
from SUPIR.util import create_SUPIR_model, load_QF_ckpt
from PIL import Image
from llava.llava_agent import LLavaAgent
from CKPT_PTH import LLAVA_MODEL_PATH
import einops
import copy
import time
import spaces
from huggingface_hub import hf_hub_download

from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
from diffusers.utils import export_to_video
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import uuid

hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
hf_hub_download(repo_id="camenduru/SUPIR", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0F.ckpt", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0Q.ckpt", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="RunDiffusion/Juggernaut-XL-Lightning", filename="Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors", local_dir="RunDiffusion_Juggernaut-XL-Lightning")

parser = argparse.ArgumentParser()
parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
parser.add_argument("--ip", type=str, default='127.0.0.1')
parser.add_argument("--port", type=int, default='6688')
parser.add_argument("--no_llava", action='store_true', default=False)
parser.add_argument("--use_image_slider", action='store_true', default=False)
parser.add_argument("--log_history", action='store_true', default=False)
parser.add_argument("--loading_half_params", action='store_true', default=False)
parser.add_argument("--use_tile_vae", action='store_true', default=False)
parser.add_argument("--encoder_tile_size", type=int, default=512)
parser.add_argument("--decoder_tile_size", type=int, default=64)
parser.add_argument("--load_8bit_llava", action='store_true', default=False)
args = parser.parse_args()
server_ip = args.ip
server_port = args.port
use_llava = not args.no_llava

if torch.cuda.device_count() > 0:
    if torch.cuda.device_count() >= 2:
        SUPIR_device = 'cuda:0'
        LLaVA_device = 'cuda:1'
    elif torch.cuda.device_count() == 1:
        SUPIR_device = 'cuda:0'
        LLaVA_device = 'cuda:0'
    else:
        SUPIR_device = 'cpu'
        LLaVA_device = 'cpu'

    # load SUPIR
    model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
    if args.loading_half_params:
        model = model.half()
    if args.use_tile_vae:
        model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
    model = model.to(SUPIR_device)
    model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
    model.current_model = 'v0-Q'
    ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)

    # load LLaVA
    if use_llava:
        llava_agent = LLavaAgent(LLAVA_MODEL_PATH, device=LLaVA_device, load_8bit=args.load_8bit_llava, load_4bit=False)
    else:
        llava_agent = None


# Available adapters (replace with your actual adapter names)
adapter_options = {
    "zoom-out":"guoyww/animatediff-motion-lora-zoom-out",
    "zoom-in":"guoyww/animatediff-motion-lora-zoom-in",
    "pan-left":"guoyww/animatediff-motion-lora-pan-left",
    "pan-right":"guoyww/animatediff-motion-lora-pan-right",
    "roll-clockwise":"guoyww/animatediff-motion-lora-rolling-clockwise",
    "roll-anticlockwise":"guoyww/animatediff-motion-lora-rolling-anticlockwise",
    "tilt-up":"guoyww/animatediff-motion-lora-tilt-up",
    "tilt-down":"guoyww/animatediff-motion-lora-tilt-down"
}

def load_cached_examples():
    examples = [
        ["a cat playing with a ball of yarn", "blurry", 7.5, 12, ["zoom-in"]],
        ["a dog running in a field", "dark, indoors", 8.0, 8, ["pan-left", "tilt-up"]],
    ]
    return examples

device = "cuda"
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16)
model_id = "SG161222/Realistic_Vision_V5.1_noVAE"

pipe = AnimateDiffPipeline.from_pretrained(model_id, motion_adapter=adapter, torch_dtype=torch.float16).to(device)
scheduler = DDIMScheduler.from_pretrained(
    model_id,
    subfolder="scheduler",
    clip_sample=False,
    timestep_spacing="linspace",
    beta_schedule="linear",
    steps_offset=1,
)
pipe.scheduler = scheduler

@spaces.GPU
def generate_video(prompt,negative_prompt, guidance_scale, num_inference_steps, adapter_choices):

    pipe.to(device)

    # Set adapters based on user selection
    if adapter_choices:
        for i in range(len(adapter_choices)):
            adapter_name = adapter_choices[i]
            pipe.load_lora_weights(
                adapter_options[adapter_name], adapter_name=adapter_name,
            )
        pipe.set_adapters(adapter_choices, adapter_weights=[1.0] * len(adapter_choices))
        print(adapter_choices)

    output = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        num_frames=16,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
    )
    name = str(uuid.uuid4()).replace("-", "")
    path = f"/tmp/{name}.mp4"
    export_to_video(output.frames[0], path, fps=10)
    return path



iface = gr.Interface(
    theme=gr.themes.Soft(primary_hue="cyan", secondary_hue="teal"),
    fn=generate_video,
    inputs=[
        gr.Textbox(label="Prompt"),
        gr.Textbox(label="Negative Prompt"),
        gr.Slider(minimum=0.5, maximum=10, value=7.5, label="Guidance Scale"),
        gr.Slider(minimum=4, maximum=24, step=4, value=4, label="Inference Steps"),
        gr.CheckboxGroup(adapter_options.keys(), label="Adapter Choice",type='value'),
    ],
    outputs=gr.Video(label="Generated Video"),
    examples = [
        ["Urban ambiance, man walking, neon lights, rain, wet floor, high quality", "bad quality", 7.5, 24, []],
        ["Nature, farms, mountains in background, drone shot, high quality","bad quality" ,8.0, 24, []],
    ],
    cache_examples=True
)

iface.launch()