File size: 8,699 Bytes
610ac0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import torch
from sgm.models.diffusion import DiffusionEngine
from sgm.util import instantiate_from_config
import copy
from sgm.modules.distributions.distributions import DiagonalGaussianDistribution
import random
from SUPIR.utils.colorfix import wavelet_reconstruction, adaptive_instance_normalization
from pytorch_lightning import seed_everything
from torch.nn.functional import interpolate
from SUPIR.utils.tilevae import VAEHook

class SUPIRModel(DiffusionEngine):
    def __init__(self, control_stage_config, ae_dtype='fp32', diffusion_dtype='fp32', p_p='', n_p='', *args, **kwargs):
        super().__init__(*args, **kwargs)
        control_model = instantiate_from_config(control_stage_config)
        self.model.load_control_model(control_model)
        self.first_stage_model.denoise_encoder = copy.deepcopy(self.first_stage_model.encoder)
        self.sampler_config = kwargs['sampler_config']

        assert (ae_dtype in ['fp32', 'fp16', 'bf16']) and (diffusion_dtype in ['fp32', 'fp16', 'bf16'])
        if ae_dtype == 'fp32':
            ae_dtype = torch.float32
        elif ae_dtype == 'fp16':
            raise RuntimeError('fp16 cause NaN in AE')
        elif ae_dtype == 'bf16':
            ae_dtype = torch.bfloat16

        if diffusion_dtype == 'fp32':
            diffusion_dtype = torch.float32
        elif diffusion_dtype == 'fp16':
            diffusion_dtype = torch.float16
        elif diffusion_dtype == 'bf16':
            diffusion_dtype = torch.bfloat16

        self.ae_dtype = ae_dtype
        self.model.dtype = diffusion_dtype

        self.p_p = p_p
        self.n_p = n_p

    @torch.no_grad()
    def encode_first_stage(self, x):
        with torch.autocast("cuda", dtype=self.ae_dtype):
            z = self.first_stage_model.encode(x)
        z = self.scale_factor * z
        return z

    @torch.no_grad()
    def encode_first_stage_with_denoise(self, x, use_sample=True, is_stage1=False):
        with torch.autocast("cuda", dtype=self.ae_dtype):
            if is_stage1:
                h = self.first_stage_model.denoise_encoder_s1(x)
            else:
                h = self.first_stage_model.denoise_encoder(x)
            moments = self.first_stage_model.quant_conv(h)
            posterior = DiagonalGaussianDistribution(moments)
            if use_sample:
                z = posterior.sample()
            else:
                z = posterior.mode()
        z = self.scale_factor * z
        return z

    @torch.no_grad()
    def decode_first_stage(self, z):
        z = 1.0 / self.scale_factor * z
        with torch.autocast("cuda", dtype=self.ae_dtype):
            out = self.first_stage_model.decode(z)
        return out.float()

    @torch.no_grad()
    def batchify_denoise(self, x, is_stage1=False):
        '''
        [N, C, H, W], [-1, 1], RGB
        '''
        x = self.encode_first_stage_with_denoise(x, use_sample=False, is_stage1=is_stage1)
        return self.decode_first_stage(x)

    @torch.no_grad()
    def batchify_sample(self, x, p, p_p='default', n_p='default', num_steps=100, restoration_scale=4.0, s_churn=0, s_noise=1.003, cfg_scale=4.0, seed=-1,
                        num_samples=1, control_scale=1, color_fix_type='None', use_linear_CFG=False, use_linear_control_scale=False,
                        cfg_scale_start=1.0, control_scale_start=0.0, **kwargs):
        '''
        [N, C], [-1, 1], RGB
        '''
        assert len(x) == len(p)
        assert color_fix_type in ['Wavelet', 'AdaIn', 'None']

        N = len(x)
        if num_samples > 1:
            assert N == 1
            N = num_samples
            x = x.repeat(N, 1, 1, 1)
            p = p * N

        if p_p == 'default':
            p_p = self.p_p
        if n_p == 'default':
            n_p = self.n_p

        self.sampler_config.params.num_steps = num_steps
        if use_linear_CFG:
            self.sampler_config.params.guider_config.params.scale_min = cfg_scale
            self.sampler_config.params.guider_config.params.scale = cfg_scale_start
        else:
            self.sampler_config.params.guider_config.params.scale_min = cfg_scale
            self.sampler_config.params.guider_config.params.scale = cfg_scale
        self.sampler_config.params.restore_cfg = restoration_scale
        self.sampler_config.params.s_churn = s_churn
        self.sampler_config.params.s_noise = s_noise
        self.sampler = instantiate_from_config(self.sampler_config)

        if seed == -1:
            seed = random.randint(0, 65535)
        seed_everything(seed)

        _z = self.encode_first_stage_with_denoise(x, use_sample=False)
        x_stage1 = self.decode_first_stage(_z)
        z_stage1 = self.encode_first_stage(x_stage1)

        c, uc = self.prepare_condition(_z, p, p_p, n_p, N)

        denoiser = lambda input, sigma, c, control_scale: self.denoiser(
            self.model, input, sigma, c, control_scale, **kwargs
        )

        noised_z = torch.randn_like(_z).to(_z.device)

        _samples = self.sampler(denoiser, noised_z, cond=c, uc=uc, x_center=z_stage1, control_scale=control_scale,
                                use_linear_control_scale=use_linear_control_scale, control_scale_start=control_scale_start)
        samples = self.decode_first_stage(_samples)
        if color_fix_type == 'Wavelet':
            samples = wavelet_reconstruction(samples, x_stage1)
        elif color_fix_type == 'AdaIn':
            samples = adaptive_instance_normalization(samples, x_stage1)
        return samples

    def init_tile_vae(self, encoder_tile_size=512, decoder_tile_size=64):
        self.first_stage_model.denoise_encoder.original_forward = self.first_stage_model.denoise_encoder.forward
        self.first_stage_model.encoder.original_forward = self.first_stage_model.encoder.forward
        self.first_stage_model.decoder.original_forward = self.first_stage_model.decoder.forward
        self.first_stage_model.denoise_encoder.forward = VAEHook(
            self.first_stage_model.denoise_encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
            fast_encoder=False, color_fix=False, to_gpu=True)
        self.first_stage_model.encoder.forward = VAEHook(
            self.first_stage_model.encoder, encoder_tile_size, is_decoder=False, fast_decoder=False,
            fast_encoder=False, color_fix=False, to_gpu=True)
        self.first_stage_model.decoder.forward = VAEHook(
            self.first_stage_model.decoder, decoder_tile_size, is_decoder=True, fast_decoder=False,
            fast_encoder=False, color_fix=False, to_gpu=True)

    def prepare_condition(self, _z, p, p_p, n_p, N):
        batch = {}
        batch['original_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device)
        batch['crop_coords_top_left'] = torch.tensor([0, 0]).repeat(N, 1).to(_z.device)
        batch['target_size_as_tuple'] = torch.tensor([1024, 1024]).repeat(N, 1).to(_z.device)
        batch['aesthetic_score'] = torch.tensor([9.0]).repeat(N, 1).to(_z.device)
        batch['control'] = _z

        batch_uc = copy.deepcopy(batch)
        batch_uc['txt'] = [n_p for _ in p]

        if not isinstance(p[0], list):
            batch['txt'] = [''.join([_p, p_p]) for _p in p]
            with torch.cuda.amp.autocast(dtype=self.ae_dtype):
                c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc)
        else:
            assert len(p) == 1, 'Support bs=1 only for local prompt conditioning.'
            p_tiles = p[0]
            c = []
            for i, p_tile in enumerate(p_tiles):
                batch['txt'] = [''.join([p_tile, p_p])]
                with torch.cuda.amp.autocast(dtype=self.ae_dtype):
                    if i == 0:
                        _c, uc = self.conditioner.get_unconditional_conditioning(batch, batch_uc)
                    else:
                        _c, _ = self.conditioner.get_unconditional_conditioning(batch, None)
                c.append(_c)
        return c, uc


if __name__ == '__main__':
    from SUPIR.util import create_model, load_state_dict

    model = create_model('../../options/dev/SUPIR_paper_version.yaml')

    SDXL_CKPT = '/opt/data/private/AIGC_pretrain/SDXL_cache/sd_xl_base_1.0_0.9vae.safetensors'
    SUPIR_CKPT = '/opt/data/private/AIGC_pretrain/SUPIR_cache/SUPIR-paper.ckpt'
    model.load_state_dict(load_state_dict(SDXL_CKPT), strict=False)
    model.load_state_dict(load_state_dict(SUPIR_CKPT), strict=False)
    model = model.cuda()

    x = torch.randn(1, 3, 512, 512).cuda()
    p = ['a professional, detailed, high-quality photo']
    samples = model.batchify_sample(x, p, num_steps=50, restoration_scale=4.0, s_churn=0, cfg_scale=4.0, seed=-1, num_samples=1)