Fabrice-TIERCELIN
commited on
Commit
•
28b5180
1
Parent(s):
6ed0aea
Upload 5 files
Browse files- llava/constants.py +12 -0
- llava/conversation.py +381 -0
- llava/llava_agent.py +108 -0
- llava/mm_utils.py +102 -0
- llava/utils.py +126 -0
llava/constants.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
2 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
3 |
+
|
4 |
+
LOGDIR = "."
|
5 |
+
|
6 |
+
# Model Constants
|
7 |
+
IGNORE_INDEX = -100
|
8 |
+
IMAGE_TOKEN_INDEX = -200
|
9 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
10 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
11 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
12 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
llava/conversation.py
ADDED
@@ -0,0 +1,381 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from enum import auto, Enum
|
3 |
+
from typing import List, Tuple
|
4 |
+
|
5 |
+
|
6 |
+
class SeparatorStyle(Enum):
|
7 |
+
"""Different separator style."""
|
8 |
+
SINGLE = auto()
|
9 |
+
TWO = auto()
|
10 |
+
MPT = auto()
|
11 |
+
PLAIN = auto()
|
12 |
+
LLAMA_2 = auto()
|
13 |
+
|
14 |
+
|
15 |
+
@dataclasses.dataclass
|
16 |
+
class Conversation:
|
17 |
+
"""A class that keeps all conversation history."""
|
18 |
+
system: str
|
19 |
+
roles: List[str]
|
20 |
+
messages: List[List[str]]
|
21 |
+
offset: int
|
22 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
23 |
+
sep: str = "###"
|
24 |
+
sep2: str = None
|
25 |
+
version: str = "Unknown"
|
26 |
+
|
27 |
+
skip_next: bool = False
|
28 |
+
|
29 |
+
def get_prompt(self):
|
30 |
+
messages = self.messages
|
31 |
+
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
32 |
+
messages = self.messages.copy()
|
33 |
+
init_role, init_msg = messages[0].copy()
|
34 |
+
init_msg = init_msg[0].replace("<image>", "").strip()
|
35 |
+
if 'mmtag' in self.version:
|
36 |
+
messages[0] = (init_role, init_msg)
|
37 |
+
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
|
38 |
+
messages.insert(1, (self.roles[1], "Received."))
|
39 |
+
else:
|
40 |
+
messages[0] = (init_role, "<image>\n" + init_msg)
|
41 |
+
|
42 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
43 |
+
ret = self.system + self.sep
|
44 |
+
for role, message in messages:
|
45 |
+
if message:
|
46 |
+
if type(message) is tuple:
|
47 |
+
message, _, _ = message
|
48 |
+
ret += role + ": " + message + self.sep
|
49 |
+
else:
|
50 |
+
ret += role + ":"
|
51 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
52 |
+
seps = [self.sep, self.sep2]
|
53 |
+
ret = self.system + seps[0]
|
54 |
+
for i, (role, message) in enumerate(messages):
|
55 |
+
if message:
|
56 |
+
if type(message) is tuple:
|
57 |
+
message, _, _ = message
|
58 |
+
ret += role + ": " + message + seps[i % 2]
|
59 |
+
else:
|
60 |
+
ret += role + ":"
|
61 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
62 |
+
ret = self.system + self.sep
|
63 |
+
for role, message in messages:
|
64 |
+
if message:
|
65 |
+
if type(message) is tuple:
|
66 |
+
message, _, _ = message
|
67 |
+
ret += role + message + self.sep
|
68 |
+
else:
|
69 |
+
ret += role
|
70 |
+
elif self.sep_style == SeparatorStyle.LLAMA_2:
|
71 |
+
wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n"
|
72 |
+
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
|
73 |
+
ret = ""
|
74 |
+
|
75 |
+
for i, (role, message) in enumerate(messages):
|
76 |
+
if i == 0:
|
77 |
+
assert message, "first message should not be none"
|
78 |
+
assert role == self.roles[0], "first message should come from user"
|
79 |
+
if message:
|
80 |
+
if type(message) is tuple:
|
81 |
+
message, _, _ = message
|
82 |
+
if i == 0: message = wrap_sys(self.system) + message
|
83 |
+
if i % 2 == 0:
|
84 |
+
message = wrap_inst(message)
|
85 |
+
ret += self.sep + message
|
86 |
+
else:
|
87 |
+
ret += " " + message + " " + self.sep2
|
88 |
+
else:
|
89 |
+
ret += ""
|
90 |
+
ret = ret.lstrip(self.sep)
|
91 |
+
elif self.sep_style == SeparatorStyle.PLAIN:
|
92 |
+
seps = [self.sep, self.sep2]
|
93 |
+
ret = self.system
|
94 |
+
for i, (role, message) in enumerate(messages):
|
95 |
+
if message:
|
96 |
+
if type(message) is tuple:
|
97 |
+
message, _, _ = message
|
98 |
+
ret += message + seps[i % 2]
|
99 |
+
else:
|
100 |
+
ret += ""
|
101 |
+
else:
|
102 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
103 |
+
|
104 |
+
return ret
|
105 |
+
|
106 |
+
def append_message(self, role, message):
|
107 |
+
self.messages.append([role, message])
|
108 |
+
|
109 |
+
def get_images(self, return_pil=False):
|
110 |
+
images = []
|
111 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
112 |
+
if i % 2 == 0:
|
113 |
+
if type(msg) is tuple:
|
114 |
+
import base64
|
115 |
+
from io import BytesIO
|
116 |
+
from PIL import Image
|
117 |
+
msg, image, image_process_mode = msg
|
118 |
+
if image_process_mode == "Pad":
|
119 |
+
def expand2square(pil_img, background_color=(122, 116, 104)):
|
120 |
+
width, height = pil_img.size
|
121 |
+
if width == height:
|
122 |
+
return pil_img
|
123 |
+
elif width > height:
|
124 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
125 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
126 |
+
return result
|
127 |
+
else:
|
128 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
129 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
130 |
+
return result
|
131 |
+
image = expand2square(image)
|
132 |
+
elif image_process_mode in ["Default", "Crop"]:
|
133 |
+
pass
|
134 |
+
elif image_process_mode == "Resize":
|
135 |
+
image = image.resize((336, 336))
|
136 |
+
else:
|
137 |
+
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
138 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
139 |
+
aspect_ratio = max_hw / min_hw
|
140 |
+
max_len, min_len = 800, 400
|
141 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
142 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
143 |
+
W, H = image.size
|
144 |
+
if longest_edge != max(image.size):
|
145 |
+
if H > W:
|
146 |
+
H, W = longest_edge, shortest_edge
|
147 |
+
else:
|
148 |
+
H, W = shortest_edge, longest_edge
|
149 |
+
image = image.resize((W, H))
|
150 |
+
if return_pil:
|
151 |
+
images.append(image)
|
152 |
+
else:
|
153 |
+
buffered = BytesIO()
|
154 |
+
image.save(buffered, format="PNG")
|
155 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
156 |
+
images.append(img_b64_str)
|
157 |
+
return images
|
158 |
+
|
159 |
+
def to_gradio_chatbot(self):
|
160 |
+
ret = []
|
161 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
162 |
+
if i % 2 == 0:
|
163 |
+
if type(msg) is tuple:
|
164 |
+
import base64
|
165 |
+
from io import BytesIO
|
166 |
+
msg, image, image_process_mode = msg
|
167 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
168 |
+
aspect_ratio = max_hw / min_hw
|
169 |
+
max_len, min_len = 800, 400
|
170 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
171 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
172 |
+
W, H = image.size
|
173 |
+
if H > W:
|
174 |
+
H, W = longest_edge, shortest_edge
|
175 |
+
else:
|
176 |
+
H, W = shortest_edge, longest_edge
|
177 |
+
image = image.resize((W, H))
|
178 |
+
buffered = BytesIO()
|
179 |
+
image.save(buffered, format="JPEG")
|
180 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
181 |
+
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
|
182 |
+
msg = img_str + msg.replace('<image>', '').strip()
|
183 |
+
ret.append([msg, None])
|
184 |
+
else:
|
185 |
+
ret.append([msg, None])
|
186 |
+
else:
|
187 |
+
ret[-1][-1] = msg
|
188 |
+
return ret
|
189 |
+
|
190 |
+
def copy(self):
|
191 |
+
return Conversation(
|
192 |
+
system=self.system,
|
193 |
+
roles=self.roles,
|
194 |
+
messages=[[x, y] for x, y in self.messages],
|
195 |
+
offset=self.offset,
|
196 |
+
sep_style=self.sep_style,
|
197 |
+
sep=self.sep,
|
198 |
+
sep2=self.sep2,
|
199 |
+
version=self.version)
|
200 |
+
|
201 |
+
def dict(self):
|
202 |
+
if len(self.get_images()) > 0:
|
203 |
+
return {
|
204 |
+
"system": self.system,
|
205 |
+
"roles": self.roles,
|
206 |
+
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
207 |
+
"offset": self.offset,
|
208 |
+
"sep": self.sep,
|
209 |
+
"sep2": self.sep2,
|
210 |
+
}
|
211 |
+
return {
|
212 |
+
"system": self.system,
|
213 |
+
"roles": self.roles,
|
214 |
+
"messages": self.messages,
|
215 |
+
"offset": self.offset,
|
216 |
+
"sep": self.sep,
|
217 |
+
"sep2": self.sep2,
|
218 |
+
}
|
219 |
+
|
220 |
+
|
221 |
+
conv_vicuna_v0 = Conversation(
|
222 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
223 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
224 |
+
roles=("Human", "Assistant"),
|
225 |
+
messages=(
|
226 |
+
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
|
227 |
+
("Assistant",
|
228 |
+
"Renewable energy sources are those that can be replenished naturally in a relatively "
|
229 |
+
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
|
230 |
+
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
|
231 |
+
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
|
232 |
+
"renewable and non-renewable energy sources:\n"
|
233 |
+
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
|
234 |
+
"energy sources are finite and will eventually run out.\n"
|
235 |
+
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
|
236 |
+
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
|
237 |
+
"and other negative effects.\n"
|
238 |
+
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
|
239 |
+
"have lower operational costs than non-renewable sources.\n"
|
240 |
+
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
|
241 |
+
"locations than non-renewable sources.\n"
|
242 |
+
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
|
243 |
+
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
|
244 |
+
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
|
245 |
+
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
|
246 |
+
),
|
247 |
+
offset=2,
|
248 |
+
sep_style=SeparatorStyle.SINGLE,
|
249 |
+
sep="###",
|
250 |
+
)
|
251 |
+
|
252 |
+
conv_vicuna_v1 = Conversation(
|
253 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
254 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
255 |
+
roles=("USER", "ASSISTANT"),
|
256 |
+
version="v1",
|
257 |
+
messages=(),
|
258 |
+
offset=0,
|
259 |
+
sep_style=SeparatorStyle.TWO,
|
260 |
+
sep=" ",
|
261 |
+
sep2="</s>",
|
262 |
+
)
|
263 |
+
|
264 |
+
conv_llama_2 = Conversation(
|
265 |
+
system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
|
266 |
+
|
267 |
+
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
|
268 |
+
roles=("USER", "ASSISTANT"),
|
269 |
+
version="llama_v2",
|
270 |
+
messages=(),
|
271 |
+
offset=0,
|
272 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
273 |
+
sep="<s>",
|
274 |
+
sep2="</s>",
|
275 |
+
)
|
276 |
+
|
277 |
+
conv_llava_llama_2 = Conversation(
|
278 |
+
system="You are a helpful language and vision assistant. "
|
279 |
+
"You are able to understand the visual content that the user provides, "
|
280 |
+
"and assist the user with a variety of tasks using natural language.",
|
281 |
+
roles=("USER", "ASSISTANT"),
|
282 |
+
version="llama_v2",
|
283 |
+
messages=(),
|
284 |
+
offset=0,
|
285 |
+
sep_style=SeparatorStyle.LLAMA_2,
|
286 |
+
sep="<s>",
|
287 |
+
sep2="</s>",
|
288 |
+
)
|
289 |
+
|
290 |
+
conv_mpt = Conversation(
|
291 |
+
system="""<|im_start|>system
|
292 |
+
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
|
293 |
+
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
294 |
+
version="mpt",
|
295 |
+
messages=(),
|
296 |
+
offset=0,
|
297 |
+
sep_style=SeparatorStyle.MPT,
|
298 |
+
sep="<|im_end|>",
|
299 |
+
)
|
300 |
+
|
301 |
+
conv_llava_plain = Conversation(
|
302 |
+
system="",
|
303 |
+
roles=("", ""),
|
304 |
+
messages=(
|
305 |
+
),
|
306 |
+
offset=0,
|
307 |
+
sep_style=SeparatorStyle.PLAIN,
|
308 |
+
sep="\n",
|
309 |
+
)
|
310 |
+
|
311 |
+
conv_llava_v0 = Conversation(
|
312 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
313 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
314 |
+
roles=("Human", "Assistant"),
|
315 |
+
messages=(
|
316 |
+
),
|
317 |
+
offset=0,
|
318 |
+
sep_style=SeparatorStyle.SINGLE,
|
319 |
+
sep="###",
|
320 |
+
)
|
321 |
+
|
322 |
+
conv_llava_v0_mmtag = Conversation(
|
323 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
324 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
325 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
326 |
+
roles=("Human", "Assistant"),
|
327 |
+
messages=(
|
328 |
+
),
|
329 |
+
offset=0,
|
330 |
+
sep_style=SeparatorStyle.SINGLE,
|
331 |
+
sep="###",
|
332 |
+
version="v0_mmtag",
|
333 |
+
)
|
334 |
+
|
335 |
+
conv_llava_v1 = Conversation(
|
336 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
337 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
338 |
+
roles=("USER", "ASSISTANT"),
|
339 |
+
version="v1",
|
340 |
+
messages=(),
|
341 |
+
offset=0,
|
342 |
+
sep_style=SeparatorStyle.TWO,
|
343 |
+
sep=" ",
|
344 |
+
sep2="</s>",
|
345 |
+
)
|
346 |
+
|
347 |
+
conv_llava_v1_mmtag = Conversation(
|
348 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
349 |
+
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
350 |
+
"The visual content will be provided with the following format: <Image>visual content</Image>.",
|
351 |
+
roles=("USER", "ASSISTANT"),
|
352 |
+
messages=(),
|
353 |
+
offset=0,
|
354 |
+
sep_style=SeparatorStyle.TWO,
|
355 |
+
sep=" ",
|
356 |
+
sep2="</s>",
|
357 |
+
version="v1_mmtag",
|
358 |
+
)
|
359 |
+
|
360 |
+
default_conversation = conv_vicuna_v0
|
361 |
+
conv_templates = {
|
362 |
+
"default": conv_vicuna_v0,
|
363 |
+
"v0": conv_vicuna_v0,
|
364 |
+
"v1": conv_vicuna_v1,
|
365 |
+
"vicuna_v1": conv_vicuna_v1,
|
366 |
+
"llama_2": conv_llama_2,
|
367 |
+
|
368 |
+
"plain": conv_llava_plain,
|
369 |
+
"v0_plain": conv_llava_plain,
|
370 |
+
"llava_v0": conv_llava_v0,
|
371 |
+
"v0_mmtag": conv_llava_v0_mmtag,
|
372 |
+
"llava_v1": conv_llava_v1,
|
373 |
+
"v1_mmtag": conv_llava_v1_mmtag,
|
374 |
+
"llava_llama_2": conv_llava_llama_2,
|
375 |
+
|
376 |
+
"mpt": conv_mpt,
|
377 |
+
}
|
378 |
+
|
379 |
+
|
380 |
+
if __name__ == "__main__":
|
381 |
+
print(default_conversation.get_prompt())
|
llava/llava_agent.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
from tqdm import tqdm
|
5 |
+
|
6 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
7 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
8 |
+
from llava.model.builder import load_pretrained_model
|
9 |
+
from llava.utils import disable_torch_init
|
10 |
+
from llava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
|
11 |
+
|
12 |
+
from PIL import Image
|
13 |
+
import math
|
14 |
+
import time
|
15 |
+
import glob as gb
|
16 |
+
|
17 |
+
|
18 |
+
class LLavaAgent:
|
19 |
+
def __init__(self, model_path, device='cuda', conv_mode='vicuna_v1', load_8bit=False, load_4bit=False):
|
20 |
+
self.device = device
|
21 |
+
if torch.device(self.device).index is not None:
|
22 |
+
device_map = {'model': torch.device(self.device).index, 'lm_head': torch.device(self.device).index}
|
23 |
+
else:
|
24 |
+
device_map = 'auto'
|
25 |
+
model_path = os.path.expanduser(model_path)
|
26 |
+
model_name = get_model_name_from_path(model_path)
|
27 |
+
tokenizer, model, image_processor, context_len = load_pretrained_model(
|
28 |
+
model_path, None, model_name, device=self.device, device_map=device_map,
|
29 |
+
load_8bit=load_8bit, load_4bit=load_4bit)
|
30 |
+
self.model = model
|
31 |
+
self.image_processor = image_processor
|
32 |
+
self.tokenizer = tokenizer
|
33 |
+
self.context_len = context_len
|
34 |
+
self.qs = 'Describe this image and its style in a very detailed manner.'
|
35 |
+
self.conv_mode = conv_mode
|
36 |
+
|
37 |
+
if self.model.config.mm_use_im_start_end:
|
38 |
+
self.qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + self.qs
|
39 |
+
else:
|
40 |
+
self.qs = DEFAULT_IMAGE_TOKEN + '\n' + self.qs
|
41 |
+
|
42 |
+
self.conv = conv_templates[self.conv_mode].copy()
|
43 |
+
self.conv.append_message(self.conv.roles[0], self.qs)
|
44 |
+
self.conv.append_message(self.conv.roles[1], None)
|
45 |
+
prompt = self.conv.get_prompt()
|
46 |
+
self.input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(
|
47 |
+
0).to(self.device)
|
48 |
+
|
49 |
+
def update_qs(self, qs=None):
|
50 |
+
if qs is None:
|
51 |
+
qs = self.qs
|
52 |
+
else:
|
53 |
+
if self.model.config.mm_use_im_start_end:
|
54 |
+
qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
|
55 |
+
else:
|
56 |
+
qs = DEFAULT_IMAGE_TOKEN + '\n' + qs
|
57 |
+
|
58 |
+
self.conv = conv_templates[self.conv_mode].copy()
|
59 |
+
self.conv.append_message(self.conv.roles[0], qs)
|
60 |
+
self.conv.append_message(self.conv.roles[1], None)
|
61 |
+
prompt = self.conv.get_prompt()
|
62 |
+
self.input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(
|
63 |
+
0).to(self.device)
|
64 |
+
|
65 |
+
def gen_image_caption(self, imgs, temperature=0.2, top_p=0.7, num_beams=1, qs=None):
|
66 |
+
'''
|
67 |
+
[PIL.Image, ...]
|
68 |
+
'''
|
69 |
+
self.update_qs(qs)
|
70 |
+
|
71 |
+
bs = len(imgs)
|
72 |
+
input_ids = self.input_ids.repeat(bs, 1)
|
73 |
+
img_tensor_list = []
|
74 |
+
for image in imgs:
|
75 |
+
_image_tensor = self.image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
76 |
+
img_tensor_list.append(_image_tensor)
|
77 |
+
image_tensor = torch.stack(img_tensor_list, dim=0).half().to(self.device)
|
78 |
+
stop_str = self.conv.sep if self.conv.sep_style != SeparatorStyle.TWO else self.conv.sep2
|
79 |
+
|
80 |
+
with torch.inference_mode():
|
81 |
+
output_ids = self.model.generate(
|
82 |
+
input_ids,
|
83 |
+
images=image_tensor,
|
84 |
+
do_sample=True if temperature > 0 else False,
|
85 |
+
temperature=temperature,
|
86 |
+
top_p=top_p,
|
87 |
+
num_beams=num_beams,
|
88 |
+
# no_repeat_ngram_size=3,
|
89 |
+
max_new_tokens=512,
|
90 |
+
use_cache=True)
|
91 |
+
|
92 |
+
input_token_len = input_ids.shape[1]
|
93 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)
|
94 |
+
|
95 |
+
img_captions = []
|
96 |
+
for output in outputs:
|
97 |
+
output = output.strip()
|
98 |
+
if output.endswith(stop_str):
|
99 |
+
output = output[:-len(stop_str)]
|
100 |
+
output = output.strip().replace('\n', ' ').replace('\r', ' ')
|
101 |
+
img_captions.append(output)
|
102 |
+
return img_captions
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == '__main__':
|
106 |
+
llava_agent = LLavaAgent("/opt/data/private/AIGC_pretrain/LLaVA1.5/llava-v1.5-13b")
|
107 |
+
img = [Image.open('/opt/data/private/LV_Dataset/DiffGLV-Test-All/RealPhoto60/LQ/02.png')]
|
108 |
+
caption = llava_agent.gen_image_caption(img)
|
llava/mm_utils.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from io import BytesIO
|
3 |
+
import base64
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from transformers import StoppingCriteria
|
7 |
+
from llava.constants import IMAGE_TOKEN_INDEX
|
8 |
+
|
9 |
+
|
10 |
+
def load_image_from_base64(image):
|
11 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
12 |
+
|
13 |
+
|
14 |
+
def expand2square(pil_img, background_color):
|
15 |
+
width, height = pil_img.size
|
16 |
+
if width == height:
|
17 |
+
return pil_img
|
18 |
+
elif width > height:
|
19 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
20 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
21 |
+
return result
|
22 |
+
else:
|
23 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
24 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
25 |
+
return result
|
26 |
+
|
27 |
+
|
28 |
+
def process_images(images, image_processor, model_cfg):
|
29 |
+
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
30 |
+
new_images = []
|
31 |
+
if image_aspect_ratio == 'pad':
|
32 |
+
for image in images:
|
33 |
+
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
34 |
+
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
35 |
+
new_images.append(image)
|
36 |
+
else:
|
37 |
+
return image_processor(images, return_tensors='pt')['pixel_values']
|
38 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
39 |
+
new_images = torch.stack(new_images, dim=0)
|
40 |
+
return new_images
|
41 |
+
|
42 |
+
|
43 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
44 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
45 |
+
|
46 |
+
def insert_separator(X, sep):
|
47 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
48 |
+
|
49 |
+
input_ids = []
|
50 |
+
offset = 0
|
51 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
52 |
+
offset = 1
|
53 |
+
input_ids.append(prompt_chunks[0][0])
|
54 |
+
|
55 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
56 |
+
input_ids.extend(x[offset:])
|
57 |
+
|
58 |
+
if return_tensors is not None:
|
59 |
+
if return_tensors == 'pt':
|
60 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
61 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
62 |
+
return input_ids
|
63 |
+
|
64 |
+
|
65 |
+
def get_model_name_from_path(model_path):
|
66 |
+
model_path = model_path.strip("/")
|
67 |
+
model_paths = model_path.split("/")
|
68 |
+
if model_paths[-1].startswith('checkpoint-'):
|
69 |
+
return model_paths[-2] + "_" + model_paths[-1]
|
70 |
+
else:
|
71 |
+
return model_paths[-1]
|
72 |
+
|
73 |
+
|
74 |
+
|
75 |
+
|
76 |
+
class KeywordsStoppingCriteria(StoppingCriteria):
|
77 |
+
def __init__(self, keywords, tokenizer, input_ids):
|
78 |
+
self.keywords = keywords
|
79 |
+
self.keyword_ids = []
|
80 |
+
self.max_keyword_len = 0
|
81 |
+
for keyword in keywords:
|
82 |
+
cur_keyword_ids = tokenizer(keyword).input_ids
|
83 |
+
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
|
84 |
+
cur_keyword_ids = cur_keyword_ids[1:]
|
85 |
+
if len(cur_keyword_ids) > self.max_keyword_len:
|
86 |
+
self.max_keyword_len = len(cur_keyword_ids)
|
87 |
+
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
|
88 |
+
self.tokenizer = tokenizer
|
89 |
+
self.start_len = input_ids.shape[1]
|
90 |
+
|
91 |
+
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
92 |
+
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
|
93 |
+
offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len)
|
94 |
+
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
|
95 |
+
for keyword_id in self.keyword_ids:
|
96 |
+
if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all():
|
97 |
+
return True
|
98 |
+
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
|
99 |
+
for keyword in self.keywords:
|
100 |
+
if keyword in outputs:
|
101 |
+
return True
|
102 |
+
return False
|
llava/utils.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import logging
|
3 |
+
import logging.handlers
|
4 |
+
import os
|
5 |
+
import sys
|
6 |
+
|
7 |
+
import requests
|
8 |
+
|
9 |
+
from llava.constants import LOGDIR
|
10 |
+
|
11 |
+
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
|
12 |
+
moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN."
|
13 |
+
|
14 |
+
handler = None
|
15 |
+
|
16 |
+
|
17 |
+
def build_logger(logger_name, logger_filename):
|
18 |
+
global handler
|
19 |
+
|
20 |
+
formatter = logging.Formatter(
|
21 |
+
fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
|
22 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
23 |
+
)
|
24 |
+
|
25 |
+
# Set the format of root handlers
|
26 |
+
if not logging.getLogger().handlers:
|
27 |
+
logging.basicConfig(level=logging.INFO)
|
28 |
+
logging.getLogger().handlers[0].setFormatter(formatter)
|
29 |
+
|
30 |
+
# Redirect stdout and stderr to loggers
|
31 |
+
stdout_logger = logging.getLogger("stdout")
|
32 |
+
stdout_logger.setLevel(logging.INFO)
|
33 |
+
sl = StreamToLogger(stdout_logger, logging.INFO)
|
34 |
+
sys.stdout = sl
|
35 |
+
|
36 |
+
stderr_logger = logging.getLogger("stderr")
|
37 |
+
stderr_logger.setLevel(logging.ERROR)
|
38 |
+
sl = StreamToLogger(stderr_logger, logging.ERROR)
|
39 |
+
sys.stderr = sl
|
40 |
+
|
41 |
+
# Get logger
|
42 |
+
logger = logging.getLogger(logger_name)
|
43 |
+
logger.setLevel(logging.INFO)
|
44 |
+
|
45 |
+
# Add a file handler for all loggers
|
46 |
+
if handler is None:
|
47 |
+
os.makedirs(LOGDIR, exist_ok=True)
|
48 |
+
filename = os.path.join(LOGDIR, logger_filename)
|
49 |
+
handler = logging.handlers.TimedRotatingFileHandler(
|
50 |
+
filename, when='D', utc=True)
|
51 |
+
handler.setFormatter(formatter)
|
52 |
+
|
53 |
+
for name, item in logging.root.manager.loggerDict.items():
|
54 |
+
if isinstance(item, logging.Logger):
|
55 |
+
item.addHandler(handler)
|
56 |
+
|
57 |
+
return logger
|
58 |
+
|
59 |
+
|
60 |
+
class StreamToLogger(object):
|
61 |
+
"""
|
62 |
+
Fake file-like stream object that redirects writes to a logger instance.
|
63 |
+
"""
|
64 |
+
def __init__(self, logger, log_level=logging.INFO):
|
65 |
+
self.terminal = sys.stdout
|
66 |
+
self.logger = logger
|
67 |
+
self.log_level = log_level
|
68 |
+
self.linebuf = ''
|
69 |
+
|
70 |
+
def __getattr__(self, attr):
|
71 |
+
return getattr(self.terminal, attr)
|
72 |
+
|
73 |
+
def write(self, buf):
|
74 |
+
temp_linebuf = self.linebuf + buf
|
75 |
+
self.linebuf = ''
|
76 |
+
for line in temp_linebuf.splitlines(True):
|
77 |
+
# From the io.TextIOWrapper docs:
|
78 |
+
# On output, if newline is None, any '\n' characters written
|
79 |
+
# are translated to the system default line separator.
|
80 |
+
# By default sys.stdout.write() expects '\n' newlines and then
|
81 |
+
# translates them so this is still cross platform.
|
82 |
+
if line[-1] == '\n':
|
83 |
+
self.logger.log(self.log_level, line.rstrip())
|
84 |
+
else:
|
85 |
+
self.linebuf += line
|
86 |
+
|
87 |
+
def flush(self):
|
88 |
+
if self.linebuf != '':
|
89 |
+
self.logger.log(self.log_level, self.linebuf.rstrip())
|
90 |
+
self.linebuf = ''
|
91 |
+
|
92 |
+
|
93 |
+
def disable_torch_init():
|
94 |
+
"""
|
95 |
+
Disable the redundant torch default initialization to accelerate model creation.
|
96 |
+
"""
|
97 |
+
import torch
|
98 |
+
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
|
99 |
+
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
|
100 |
+
|
101 |
+
|
102 |
+
def violates_moderation(text):
|
103 |
+
"""
|
104 |
+
Check whether the text violates OpenAI moderation API.
|
105 |
+
"""
|
106 |
+
url = "https://api.openai.com/v1/moderations"
|
107 |
+
headers = {"Content-Type": "application/json",
|
108 |
+
"Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]}
|
109 |
+
text = text.replace("\n", "")
|
110 |
+
data = "{" + '"input": ' + f'"{text}"' + "}"
|
111 |
+
data = data.encode("utf-8")
|
112 |
+
try:
|
113 |
+
ret = requests.post(url, headers=headers, data=data, timeout=5)
|
114 |
+
flagged = ret.json()["results"][0]["flagged"]
|
115 |
+
except requests.exceptions.RequestException as e:
|
116 |
+
flagged = False
|
117 |
+
except KeyError as e:
|
118 |
+
flagged = False
|
119 |
+
|
120 |
+
return flagged
|
121 |
+
|
122 |
+
|
123 |
+
def pretty_print_semaphore(semaphore):
|
124 |
+
if semaphore is None:
|
125 |
+
return "None"
|
126 |
+
return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})"
|