File size: 4,706 Bytes
258d8c9
 
 
 
 
 
0ae97cf
258d8c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from PIL import Image
import gradio as gr
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
import torch
torch.backends.cuda.matmul.allow_tf32 = True

controlnet = ControlNetModel.from_pretrained("JFoz/dog-cat-pose", torch_dtype=torch.float16)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5",
    controlnet=controlnet,
    torch_dtype=torch.float16,
    safety_checker=None,
)

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)

pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing()

def infer(
        prompt,
        negative_prompt,
        conditioning_image,
        num_inference_steps=30,
        size=768,
        guidance_scale=7.0,
        seed=1234,
):

    conditioning_image_raw = Image.fromarray(conditioning_image)
    #conditioning_image = conditioning_image_raw.convert('L')

    g_cpu = torch.Generator()

    if seed == -1:
        generator = g_cpu.manual_seed(g_cpu.seed())
    else:
        generator = g_cpu.manual_seed(seed)

    output_image = pipe(
        prompt,
        conditioning_image,
        height=size,
        width=size,
        num_inference_steps=num_inference_steps,
        generator=generator,
        negative_prompt=negative_prompt,
        guidance_scale=guidance_scale,
        controlnet_conditioning_scale=1.0,
    ).images[0]

    #del conditioning_image, conditioning_image_raw
    #gc.collect()

    return output_image

with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo:
    gr.Markdown(
        """
    # Animal Pose Control Net
    # This is a demo of Animal Pose Control Net, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning.
    """)

    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(
                label="Prompt",
            )
            negative_prompt = gr.Textbox(
                label="Negative Prompt",
            )
            conditioning_image = gr.Image(
                label="Conditioning Image",
            )
            with gr.Accordion('Advanced options', open=False):
                with gr.Row():
                    num_inference_steps = gr.Slider(
                        10, 40, 20,
                        step=1,
                        label="Steps",
                    )
                    size = gr.Slider(
                        256, 768, 512,
                        step=128,
                        label="Size",
                    )
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label='Guidance Scale',
                        minimum=0.1,
                        maximum=30.0,
                        value=7.0,
                        step=0.1
                    )
                    seed = gr.Slider(
                        label='Seed',
                        value=-1,
                        minimum=-1,
                        maximum=2147483647,
                        step=1,
                        # randomize=True
                    )
            submit_btn = gr.Button(
                value="Submit",
                variant="primary"
            )
        with gr.Column(min_width=300):
            output = gr.Image(
                label="Result",
            )

    submit_btn.click(
        fn=infer,
        inputs=[
            prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed
            #prompt, size, seed
        ],
        outputs=output
    )
    gr.Examples(
        examples=[
            #["a tortoiseshell cat is sitting on a cushion"],
            #["a yellow dog standing on a lawn"],
            ["a tortoiseshell cat is sitting on a cushion",  "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_0.png"],
            ["a yellow dog standing on a lawn", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_1.png"],
        ],
        inputs=[
            #prompt, negative_prompt, conditioning_image
            prompt
        ],
        outputs=output,
        fn=infer,
        cache_examples=True,
    )
    gr.Markdown(
        """
    * [Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset)
    * [Diffusers model](), [Web UI model](https://huggingface.co/JFoz/dog-pose)
    * [Training Report](https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5))
    """)

#gr.Interface(infer, inputs=["text"], outputs=[output], title=title, description=description, examples=examples).queue().launch()
demo.launch()