kfahn's picture
Update app.py
0ae97cf
raw
history blame
4.71 kB
from PIL import Image
import gradio as gr
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
import torch
torch.backends.cuda.matmul.allow_tf32 = True
controlnet = ControlNetModel.from_pretrained("JFoz/dog-cat-pose", torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16,
safety_checker=None,
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()
pipe.enable_attention_slicing()
def infer(
prompt,
negative_prompt,
conditioning_image,
num_inference_steps=30,
size=768,
guidance_scale=7.0,
seed=1234,
):
conditioning_image_raw = Image.fromarray(conditioning_image)
#conditioning_image = conditioning_image_raw.convert('L')
g_cpu = torch.Generator()
if seed == -1:
generator = g_cpu.manual_seed(g_cpu.seed())
else:
generator = g_cpu.manual_seed(seed)
output_image = pipe(
prompt,
conditioning_image,
height=size,
width=size,
num_inference_steps=num_inference_steps,
generator=generator,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=1.0,
).images[0]
#del conditioning_image, conditioning_image_raw
#gc.collect()
return output_image
with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo:
gr.Markdown(
"""
# Animal Pose Control Net
# This is a demo of Animal Pose Control Net, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning.
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
)
negative_prompt = gr.Textbox(
label="Negative Prompt",
)
conditioning_image = gr.Image(
label="Conditioning Image",
)
with gr.Accordion('Advanced options', open=False):
with gr.Row():
num_inference_steps = gr.Slider(
10, 40, 20,
step=1,
label="Steps",
)
size = gr.Slider(
256, 768, 512,
step=128,
label="Size",
)
with gr.Row():
guidance_scale = gr.Slider(
label='Guidance Scale',
minimum=0.1,
maximum=30.0,
value=7.0,
step=0.1
)
seed = gr.Slider(
label='Seed',
value=-1,
minimum=-1,
maximum=2147483647,
step=1,
# randomize=True
)
submit_btn = gr.Button(
value="Submit",
variant="primary"
)
with gr.Column(min_width=300):
output = gr.Image(
label="Result",
)
submit_btn.click(
fn=infer,
inputs=[
prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed
#prompt, size, seed
],
outputs=output
)
gr.Examples(
examples=[
#["a tortoiseshell cat is sitting on a cushion"],
#["a yellow dog standing on a lawn"],
["a tortoiseshell cat is sitting on a cushion", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_0.png"],
["a yellow dog standing on a lawn", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_1.png"],
],
inputs=[
#prompt, negative_prompt, conditioning_image
prompt
],
outputs=output,
fn=infer,
cache_examples=True,
)
gr.Markdown(
"""
* [Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset)
* [Diffusers model](), [Web UI model](https://huggingface.co/JFoz/dog-pose)
* [Training Report](https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5))
""")
#gr.Interface(infer, inputs=["text"], outputs=[output], title=title, description=description, examples=examples).queue().launch()
demo.launch()