Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
from typing import List, Optional, Tuple, Type | |
import torch | |
from torch import nn | |
from third_parts.sam2.modeling.sam2_utils import LayerNorm2d, MLP | |
class MaskDecoder(nn.Module): | |
def __init__( | |
self, | |
*, | |
transformer_dim: int, | |
transformer: nn.Module, | |
num_multimask_outputs: int = 3, | |
activation: Type[nn.Module] = nn.GELU, | |
iou_head_depth: int = 3, | |
iou_head_hidden_dim: int = 256, | |
use_high_res_features: bool = False, | |
iou_prediction_use_sigmoid=False, | |
dynamic_multimask_via_stability=False, | |
dynamic_multimask_stability_delta=0.05, | |
dynamic_multimask_stability_thresh=0.98, | |
pred_obj_scores: bool = False, | |
pred_obj_scores_mlp: bool = False, | |
use_multimask_token_for_obj_ptr: bool = False, | |
) -> None: | |
""" | |
Predicts masks given an image and prompt embeddings, using a | |
transformer architecture. | |
Arguments: | |
transformer_dim (int): the channel dimension of the transformer | |
transformer (nn.Module): the transformer used to predict masks | |
num_multimask_outputs (int): the number of masks to predict | |
when disambiguating masks | |
activation (nn.Module): the type of activation to use when | |
upscaling masks | |
iou_head_depth (int): the depth of the MLP used to predict | |
mask quality | |
iou_head_hidden_dim (int): the hidden dimension of the MLP | |
used to predict mask quality | |
""" | |
super().__init__() | |
self.transformer_dim = transformer_dim | |
self.transformer = transformer | |
self.num_multimask_outputs = num_multimask_outputs | |
self.iou_token = nn.Embedding(1, transformer_dim) | |
self.num_mask_tokens = num_multimask_outputs + 1 | |
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim) | |
self.pred_obj_scores = pred_obj_scores | |
if self.pred_obj_scores: | |
self.obj_score_token = nn.Embedding(1, transformer_dim) | |
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr | |
self.output_upscaling = nn.Sequential( | |
nn.ConvTranspose2d( | |
transformer_dim, transformer_dim // 4, kernel_size=2, stride=2 | |
), | |
LayerNorm2d(transformer_dim // 4), | |
activation(), | |
nn.ConvTranspose2d( | |
transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2 | |
), | |
activation(), | |
) | |
self.use_high_res_features = use_high_res_features | |
if use_high_res_features: | |
self.conv_s0 = nn.Conv2d( | |
transformer_dim, transformer_dim // 8, kernel_size=1, stride=1 | |
) | |
self.conv_s1 = nn.Conv2d( | |
transformer_dim, transformer_dim // 4, kernel_size=1, stride=1 | |
) | |
self.output_hypernetworks_mlps = nn.ModuleList( | |
[ | |
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) | |
for i in range(self.num_mask_tokens) | |
] | |
) | |
self.iou_prediction_head = MLP( | |
transformer_dim, | |
iou_head_hidden_dim, | |
self.num_mask_tokens, | |
iou_head_depth, | |
sigmoid_output=iou_prediction_use_sigmoid, | |
) | |
if self.pred_obj_scores: | |
self.pred_obj_score_head = nn.Linear(transformer_dim, 1) | |
if pred_obj_scores_mlp: | |
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3) | |
# When outputting a single mask, optionally we can dynamically fall back to the best | |
# multimask output token if the single mask output token gives low stability scores. | |
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability | |
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta | |
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh | |
def forward( | |
self, | |
image_embeddings: torch.Tensor, | |
image_pe: torch.Tensor, | |
sparse_prompt_embeddings: torch.Tensor, | |
dense_prompt_embeddings: torch.Tensor, | |
multimask_output: bool, | |
repeat_image: bool, | |
high_res_features: Optional[List[torch.Tensor]] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
""" | |
Predict masks given image and prompt embeddings. | |
Arguments: | |
image_embeddings (torch.Tensor): the embeddings from the image encoder | |
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings | |
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes | |
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs | |
multimask_output (bool): Whether to return multiple masks or a single | |
mask. | |
Returns: | |
torch.Tensor: batched predicted masks | |
torch.Tensor: batched predictions of mask quality | |
torch.Tensor: batched SAM token for mask output | |
""" | |
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks( | |
image_embeddings=image_embeddings, | |
image_pe=image_pe, | |
sparse_prompt_embeddings=sparse_prompt_embeddings, | |
dense_prompt_embeddings=dense_prompt_embeddings, | |
repeat_image=repeat_image, | |
high_res_features=high_res_features, | |
) | |
# Select the correct mask or masks for output | |
if multimask_output: | |
masks = masks[:, 1:, :, :] | |
iou_pred = iou_pred[:, 1:] | |
elif self.dynamic_multimask_via_stability and not self.training: | |
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred) | |
else: | |
masks = masks[:, 0:1, :, :] | |
iou_pred = iou_pred[:, 0:1] | |
if multimask_output and self.use_multimask_token_for_obj_ptr: | |
sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape | |
else: | |
# Take the mask output token. Here we *always* use the token for single mask output. | |
# At test time, even if we track after 1-click (and using multimask_output=True), | |
# we still take the single mask token here. The rationale is that we always track | |
# after multiple clicks during training, so the past tokens seen during training | |
# are always the single mask token (and we'll let it be the object-memory token). | |
sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape | |
# Prepare output | |
return masks, iou_pred, sam_tokens_out, object_score_logits | |
def predict_masks( | |
self, | |
image_embeddings: torch.Tensor, | |
image_pe: torch.Tensor, | |
sparse_prompt_embeddings: torch.Tensor, | |
dense_prompt_embeddings: torch.Tensor, | |
repeat_image: bool, | |
high_res_features: Optional[List[torch.Tensor]] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
"""Predicts masks. See 'forward' for more details.""" | |
# Concatenate output tokens | |
s = 0 | |
if self.pred_obj_scores: | |
output_tokens = torch.cat( | |
[ | |
self.obj_score_token.weight, | |
self.iou_token.weight, | |
self.mask_tokens.weight, | |
], | |
dim=0, | |
) | |
s = 1 | |
else: | |
output_tokens = torch.cat( | |
[self.iou_token.weight, self.mask_tokens.weight], dim=0 | |
) | |
output_tokens = output_tokens.unsqueeze(0).expand( | |
sparse_prompt_embeddings.size(0), -1, -1 | |
) | |
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1) | |
# Expand per-image data in batch direction to be per-mask | |
if repeat_image: | |
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0) | |
else: | |
assert image_embeddings.shape[0] == tokens.shape[0] | |
src = image_embeddings | |
src = src + dense_prompt_embeddings | |
assert ( | |
image_pe.size(0) == 1 | |
), "image_pe should have size 1 in batch dim (from `get_dense_pe()`)" | |
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0) | |
b, c, h, w = src.shape | |
# Run the transformer | |
# print('src: ', src.dtype, 'pos_src:', pos_src.dtype, 'tokens:', tokens.dtype) | |
_dtype = pos_src.dtype | |
src = src.to(_dtype) | |
tokens = tokens.to(_dtype) | |
hs, src = self.transformer(src, pos_src, tokens) | |
iou_token_out = hs[:, s, :] | |
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :] | |
# Upscale mask embeddings and predict masks using the mask tokens | |
src = src.transpose(1, 2).view(b, c, h, w) | |
if not self.use_high_res_features: | |
upscaled_embedding = self.output_upscaling(src) | |
else: | |
dc1, ln1, act1, dc2, act2 = self.output_upscaling | |
feat_s0, feat_s1 = high_res_features | |
upscaled_embedding = act1(ln1(dc1(src) + feat_s1)) | |
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0) | |
hyper_in_list: List[torch.Tensor] = [] | |
for i in range(self.num_mask_tokens): | |
hyper_in_list.append( | |
self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]) | |
) | |
hyper_in = torch.stack(hyper_in_list, dim=1) | |
b, c, h, w = upscaled_embedding.shape | |
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w) | |
# Generate mask quality predictions | |
iou_pred = self.iou_prediction_head(iou_token_out) | |
if self.pred_obj_scores: | |
assert s == 1 | |
object_score_logits = self.pred_obj_score_head(hs[:, 0, :]) | |
else: | |
# Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1 | |
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1) | |
return masks, iou_pred, mask_tokens_out, object_score_logits | |
def _get_stability_scores(self, mask_logits): | |
""" | |
Compute stability scores of the mask logits based on the IoU between upper and | |
lower thresholds, similar to https://github.com/fairinternal/onevision/pull/568. | |
""" | |
mask_logits = mask_logits.flatten(-2) | |
stability_delta = self.dynamic_multimask_stability_delta | |
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float() | |
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float() | |
stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0) | |
return stability_scores | |
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores): | |
""" | |
When outputting a single mask, if the stability score from the current single-mask | |
output (based on output token 0) falls below a threshold, we instead select from | |
multi-mask outputs (based on output token 1~3) the mask with the highest predicted | |
IoU score. This is intended to ensure a valid mask for both clicking and tracking. | |
""" | |
# The best mask from multimask output tokens (1~3) | |
multimask_logits = all_mask_logits[:, 1:, :, :] | |
multimask_iou_scores = all_iou_scores[:, 1:] | |
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1) | |
batch_inds = torch.arange( | |
multimask_iou_scores.size(0), device=all_iou_scores.device | |
) | |
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds] | |
best_multimask_logits = best_multimask_logits.unsqueeze(1) | |
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds] | |
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1) | |
# The mask from singlemask output token 0 and its stability score | |
singlemask_logits = all_mask_logits[:, 0:1, :, :] | |
singlemask_iou_scores = all_iou_scores[:, 0:1] | |
stability_scores = self._get_stability_scores(singlemask_logits) | |
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh | |
# Dynamically fall back to best multimask output upon low stability scores. | |
mask_logits_out = torch.where( | |
is_stable[..., None, None].expand_as(singlemask_logits), | |
singlemask_logits, | |
best_multimask_logits, | |
) | |
iou_scores_out = torch.where( | |
is_stable.expand_as(singlemask_iou_scores), | |
singlemask_iou_scores, | |
best_multimask_iou_scores, | |
) | |
return mask_logits_out, iou_scores_out | |