Spaces:
Runtime error
Runtime error
# coding=utf-8 | |
# Copyright 2022 rinna Co., Ltd. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
import torch.nn.functional as F | |
def cloob_loss(image_features, text_features, inv_tau, scale_hopfield): | |
""" | |
Note: this loss has been rescaled from the original CLOOB loss for interpretability, | |
to convert to the original, divide it by inv_tau / 2. | |
""" | |
p_xx, p_yy, p_xy, p_yx = hopfield_retrieval(image_features, text_features, scale_hopfield) | |
identity = torch.eye(p_xx.shape[1]) > 0.5 | |
i = identity.to(p_xx.device) | |
loss_img = infoLOOB_loss(p_xx.T, p_xy.T, i, inv_tau=inv_tau) | |
loss_txt = infoLOOB_loss(p_yy.T, p_yx.T, i, inv_tau=inv_tau) | |
return (loss_img + loss_txt) / 2 | |
def infoLOOB_loss(x, y, i, inv_tau): | |
tau = 1 / inv_tau | |
k = x @ y.T / tau | |
positives = -torch.mean(torch.sum(k * i, dim=1)) | |
# For logsumexp the zero entries must be equal to a very large negative number | |
large_neg = -10000.0 | |
arg_lse = k * torch.logical_not(i) + i * large_neg | |
negatives = torch.mean(torch.logsumexp(arg_lse, dim=1)) | |
return positives + negatives | |
def hopfield_retrieval(image_features, text_features, scale_hopfield): | |
patterns_xx = hopfield(state_patterns=image_features, stored_patterns=image_features, scale_hopfield=scale_hopfield) | |
patterns_yy = hopfield(state_patterns=text_features, stored_patterns=text_features, scale_hopfield=scale_hopfield) | |
patterns_xy = hopfield(state_patterns=text_features, stored_patterns=image_features, scale_hopfield=scale_hopfield) | |
patterns_yx = hopfield(state_patterns=image_features, stored_patterns=text_features, scale_hopfield=scale_hopfield) | |
return patterns_xx, patterns_yy, patterns_xy, patterns_yx | |
def hopfield(state_patterns, stored_patterns, scale_hopfield): | |
retrieved_patterns = stored_patterns.T @ F.softmax(scale_hopfield * stored_patterns @ state_patterns.T, dim=0) | |
# Row vectors -> dim=1 to normalize the row vectors | |
retrieved_patterns = retrieved_patterns / retrieved_patterns.norm(dim=0, keepdim=True) | |
return retrieved_patterns | |