maya_demo / eval_utils.py
kkr5155's picture
Upload 22 files
e968589 verified
'''
Cherry picked from Roshan's PR https://github.com/nahidalam/LLaVA/blob/1ecc141d7f20f16518f38a0d99320268305c17c3/llava/eval/maya/eval_utils.py
'''
import os
import sys
import torch
import requests
from io import BytesIO
from PIL import Image
from transformers import AutoTokenizer, AutoConfig, TextStreamer
from transformers.models.cohere.tokenization_cohere_fast import CohereTokenizerFast
from model.language_model.llava_cohere import LlavaCohereForCausalLM, LlavaCohereConfig
from constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_PATCH_TOKEN
from conversation import conv_templates, SeparatorStyle
from mm_utils import process_images, tokenizer_image_token, get_model_name_from_path
from typing import Optional, Literal
def load_maya_model(model_base: str, model_path : str, projector_path : Optional[str] = None, mode = Literal['pretrained','finetuned']):
""" Function that helps load a trained Maya model
Trained Maya model can be of two flavors :
1. Pretrained : The model has only gone through pretraining and the changes are restricted to the projector layer
2. Finetuned : Model has gone through instruction finetuning post pretraining stage. This affects the whole model
This is a replication of the load_pretrained_model function from llava.model.builder thats specific to Cohere/Maya
Args:
model_base : Path of the base LLM model in HF. Eg: 'CohereForAI/aya-23-8B', 'meta-llama/Meta-Llama-3-8B-Instruct'.
This is used to instantiate the tokenizer and the model (in case of loading the pretrained model)
model_path : Path of the trained model repo in HF. Eg : 'nahidalam/Maya'
This is used to load the config file. So this path/directory should have the config.json file
For the finetuned model, this is used to load the final model weights as well
projector_path : For the pretrained model, this represents the path to the local directory which holds the mm_projector.bin file
model : Helps specify if this is loading a pretrained only model or a finetuned model
Returns:
model: LlavaCohereForCausalLM object
tokenizer: CohereTokenizerFast object
image_processor:
content_len:
"""
device_map = 'auto'
kwargs = {"device_map": device_map}
kwargs['torch_dtype'] = torch.float32
# kwargs['attn_implementation'] = 'flash_attention_2'
## Instantiating tokenizer and model base
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
cfg_pretrained = LlavaCohereConfig.from_pretrained(model_path)
if mode == 'pretrained':
model = LlavaCohereForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
## Loading Projector layer weights
mm_projector_weights = torch.load(projector_path, map_location='cpu')
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
model.load_state_dict(mm_projector_weights, strict=False)
else:
# Load model with ignore_mismatched_sizes to handle vision tower weights
model = LlavaCohereForCausalLM.from_pretrained(
model_path,
config=cfg_pretrained,
ignore_mismatched_sizes=True, # Add this to handle vision tower weights
**kwargs
)
## Loading image processor
image_processor = None
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
if mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
model.resize_token_embeddings(len(tokenizer))
# Get and load vision tower
vision_tower = model.get_vision_tower()
if vision_tower is None:
raise ValueError("Vision tower not found in model config")
print(f"Loading vision tower... Is loaded: {vision_tower.is_loaded}")
if not vision_tower.is_loaded:
try:
vision_tower.load_model()
print("Vision tower loaded successfully")
except Exception as e:
print(f"Error loading vision tower: {str(e)}")
raise
if device_map != 'auto':
vision_tower.to(device=device_map, dtype=torch.float16)
image_processor = vision_tower.image_processor
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
#maya = MayaModel(model, tokenizer, image_processor, context_len)
return model, tokenizer, image_processor, context_len
class MayaModel(object):
def __init__(self, model : LlavaCohereForCausalLM, tokenizer : CohereTokenizerFast, image_processor, context_length):
self.model = model
self.tokenizer = tokenizer
self.image_processor = image_processor
self.context_length = context_length
def validate_inputs(self):
"""
Method to validate the inputs
"""
pass
def load_image(image_input):
"""
Convert various image inputs to a PIL Image object.
:param image_input: Can be a URL string, a file path string, or image bytes
:return: PIL Image object
"""
try:
if isinstance(image_input, str):
if image_input.startswith(('http://', 'https://')):
# Input is a URL
response = requests.get(image_input)
response.raise_for_status() # Raise an exception for bad responses
return Image.open(BytesIO(response.content))
elif os.path.isfile(image_input):
# Input is a file path
return Image.open(image_input)
else:
raise ValueError("Invalid input: string is neither a valid URL nor a file path")
elif isinstance(image_input, bytes):
# Input is bytes
return Image.open(BytesIO(image_input))
else:
raise ValueError("Invalid input type. Expected URL string, file path string, or bytes.")
except requests.RequestException as e:
raise ValueError(f"Error fetching image from URL: {e}")
except IOError as e:
raise ValueError(f"Error opening image file: {e}")
except Exception as e:
raise ValueError(f"An unexpected error occurred: {e}")
def get_single_sample_prediction(maya_model, image_file, user_question, temperature = 0.0, max_new_tokens = 100, conv_mode = 'aya'):
"""Generates the prediction for a single image-user question pair.
Args:
model (MayaModel): Trained Maya model
image_file : One of the following: Online image url, local image path, or image bytes
user_question (str): Question to be shared with LLM
temperature (float, optional): Temperature param for LLMs. Defaults to 0.0.
max_new_tokens (int, optional): Max new number of tokens generated. Defaults to 100
conv_model (str, optional): Conversation model to be used. Defaults to 'aya'.
Returns:
output (str): Model's response to user question
"""
conv = conv_templates[conv_mode].copy()
roles = conv.roles
model = maya_model.model
tokenizer = maya_model.tokenizer
image_processor = maya_model.image_processor
image = load_image(image_file)
image_size = image.size
image_tensor = process_images([image], image_processor, model.config)
if type(image_tensor) is list:
image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
else:
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
inp = user_question
if image is not None:
# first message
if model.config.mm_use_im_start_end:
inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp
else:
inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
# image = None
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
image_sizes=[image_size],
do_sample=True if temperature > 0 else False,
temperature=temperature,
max_new_tokens=max_new_tokens,
streamer=streamer,
use_cache=True)
outputs = tokenizer.decode(output_ids[0]).strip()
return outputs