Spaces:
Running
Running
import os.path | |
import logging | |
import numpy as np | |
from datetime import datetime | |
from collections import OrderedDict | |
from scipy.io import loadmat | |
import torch | |
from utils import utils_logger | |
from utils import utils_model | |
from utils import utils_image as util | |
''' | |
Spyder (Python 3.6) | |
PyTorch 1.1.0 | |
Windows 10 or Linux | |
Kai Zhang (cskaizhang@gmail.com) | |
github: https://github.com/cszn/KAIR | |
https://github.com/cszn/IRCNN | |
@inproceedings{zhang2017learning, | |
title={Learning deep CNN denoiser prior for image restoration}, | |
author={Zhang, Kai and Zuo, Wangmeng and Gu, Shuhang and Zhang, Lei}, | |
booktitle={IEEE conference on computer vision and pattern recognition}, | |
pages={3929--3938}, | |
year={2017} | |
} | |
% If you have any question, please feel free to contact with me. | |
% Kai Zhang (e-mail: cskaizhang@gmail.com; github: https://github.com/cszn) | |
by Kai Zhang (12/Dec./2019) | |
''' | |
""" | |
# -------------------------------------------- | |
|--model_zoo # model_zoo | |
|--ircnn_gray # model_name | |
|--ircnn_color | |
|--testset # testsets | |
|--set12 # testset_name | |
|--bsd68 | |
|--cbsd68 | |
|--results # results | |
|--set12_ircnn_gray # result_name = testset_name + '_' + model_name | |
|--cbsd68_ircnn_color | |
# -------------------------------------------- | |
""" | |
def main(): | |
# ---------------------------------------- | |
# Preparation | |
# ---------------------------------------- | |
noise_level_img = 50 # noise level for noisy image | |
model_name = 'ircnn_gray' # 'ircnn_gray' | 'ircnn_color' | |
testset_name = 'set12' # test set, 'bsd68' | 'set12' | |
need_degradation = True # default: True | |
x8 = False # default: False, x8 to boost performance | |
show_img = False # default: False | |
current_idx = min(24, np.int(np.ceil(noise_level_img/2)-1)) # current_idx+1 th denoiser | |
task_current = 'dn' # fixed, 'dn' for denoising | 'sr' for super-resolution | |
sf = 1 # unused for denoising | |
if 'color' in model_name: | |
n_channels = 3 # fixed, 1 for grayscale image, 3 for color image | |
else: | |
n_channels = 1 # fixed for grayscale image | |
model_pool = 'model_zoo' # fixed | |
testsets = 'testsets' # fixed | |
results = 'results' # fixed | |
result_name = testset_name + '_' + model_name # fixed | |
border = sf if task_current == 'sr' else 0 # shave boader to calculate PSNR and SSIM | |
model_path = os.path.join(model_pool, model_name+'.pth') | |
# ---------------------------------------- | |
# L_path, E_path, H_path | |
# ---------------------------------------- | |
L_path = os.path.join(testsets, testset_name) # L_path, for Low-quality images | |
H_path = L_path # H_path, for High-quality images | |
E_path = os.path.join(results, result_name) # E_path, for Estimated images | |
util.mkdir(E_path) | |
if H_path == L_path: | |
need_degradation = True | |
logger_name = result_name | |
utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log')) | |
logger = logging.getLogger(logger_name) | |
need_H = True if H_path is not None else False | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# ---------------------------------------- | |
# load model | |
# ---------------------------------------- | |
model25 = torch.load(model_path) | |
from models.network_dncnn import IRCNN as net | |
model = net(in_nc=n_channels, out_nc=n_channels, nc=64) | |
model.load_state_dict(model25[str(current_idx)], strict=True) | |
model.eval() | |
for _, v in model.named_parameters(): | |
v.requires_grad = False | |
model = model.to(device) | |
logger.info('Model path: {:s}'.format(model_path)) | |
number_parameters = sum(map(lambda x: x.numel(), model.parameters())) | |
logger.info('Params number: {}'.format(number_parameters)) | |
test_results = OrderedDict() | |
test_results['psnr'] = [] | |
test_results['ssim'] = [] | |
logger.info('model_name:{}, image sigma:{}'.format(model_name, noise_level_img)) | |
logger.info(L_path) | |
L_paths = util.get_image_paths(L_path) | |
H_paths = util.get_image_paths(H_path) if need_H else None | |
for idx, img in enumerate(L_paths): | |
# ------------------------------------ | |
# (1) img_L | |
# ------------------------------------ | |
img_name, ext = os.path.splitext(os.path.basename(img)) | |
# logger.info('{:->4d}--> {:>10s}'.format(idx+1, img_name+ext)) | |
img_L = util.imread_uint(img, n_channels=n_channels) | |
img_L = util.uint2single(img_L) | |
if need_degradation: # degradation process | |
np.random.seed(seed=0) # for reproducibility | |
img_L += np.random.normal(0, noise_level_img/255., img_L.shape) | |
util.imshow(util.single2uint(img_L), title='Noisy image with noise level {}'.format(noise_level_img)) if show_img else None | |
img_L = util.single2tensor4(img_L) | |
img_L = img_L.to(device) | |
# ------------------------------------ | |
# (2) img_E | |
# ------------------------------------ | |
if not x8: | |
img_E = model(img_L) | |
else: | |
img_E = utils_model.test_mode(model, img_L, mode=3) | |
img_E = util.tensor2uint(img_E) | |
if need_H: | |
# -------------------------------- | |
# (3) img_H | |
# -------------------------------- | |
img_H = util.imread_uint(H_paths[idx], n_channels=n_channels) | |
img_H = img_H.squeeze() | |
# -------------------------------- | |
# PSNR and SSIM | |
# -------------------------------- | |
psnr = util.calculate_psnr(img_E, img_H, border=border) | |
ssim = util.calculate_ssim(img_E, img_H, border=border) | |
test_results['psnr'].append(psnr) | |
test_results['ssim'].append(ssim) | |
logger.info('{:s} - PSNR: {:.2f} dB; SSIM: {:.4f}.'.format(img_name+ext, psnr, ssim)) | |
util.imshow(np.concatenate([img_E, img_H], axis=1), title='Recovered / Ground-truth') if show_img else None | |
# ------------------------------------ | |
# save results | |
# ------------------------------------ | |
util.imsave(img_E, os.path.join(E_path, img_name+ext)) | |
if need_H: | |
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr']) | |
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim']) | |
logger.info('Average PSNR/SSIM(RGB) - {} - PSNR: {:.2f} dB; SSIM: {:.4f}'.format(result_name, ave_psnr, ave_ssim)) | |
if __name__ == '__main__': | |
main() | |