Spaces:
Running
Running
import os.path | |
import cv2 | |
import logging | |
import time | |
import os | |
import numpy as np | |
from datetime import datetime | |
from collections import OrderedDict | |
from scipy.io import loadmat | |
#import hdf5storage | |
from scipy import ndimage | |
from scipy.signal import convolve2d | |
import torch | |
from utils import utils_deblur | |
from utils import utils_logger | |
from utils import utils_sisr as sr | |
from utils import utils_image as util | |
from models.network_usrnet import USRNet as net | |
''' | |
Spyder (Python 3.6) | |
PyTorch 1.4.0 | |
Windows 10 or Linux | |
Kai Zhang (cskaizhang@gmail.com) | |
github: https://github.com/cszn/USRNet | |
https://github.com/cszn/KAIR | |
If you have any question, please feel free to contact with me. | |
Kai Zhang (e-mail: cskaizhang@gmail.com) | |
by Kai Zhang (12/March/2020) | |
''' | |
""" | |
# -------------------------------------------- | |
testing code of USRNet for the Table 1 in the paper | |
@inproceedings{zhang2020deep, | |
title={Deep unfolding network for image super-resolution}, | |
author={Zhang, Kai and Van Gool, Luc and Timofte, Radu}, | |
booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, | |
pages={0--0}, | |
year={2020} | |
} | |
# -------------------------------------------- | |
|--model_zoo # model_zoo | |
|--usrgan # model_name, optimized for perceptual quality | |
|--usrnet # model_name, optimized for PSNR | |
|--usrgan_tiny # model_name, tiny model optimized for perceptual quality | |
|--usrnet_tiny # model_name, tiny model optimized for PSNR | |
|--testsets # testsets | |
|--set5 # testset_name | |
|--set14 | |
|--urban100 | |
|--bsd100 | |
|--srbsd68 # already cropped | |
|--results # results | |
|--srbsd68_usrnet # result_name = testset_name + '_' + model_name | |
|--srbsd68_usrgan | |
|--srbsd68_usrnet_tiny | |
|--srbsd68_usrgan_tiny | |
# -------------------------------------------- | |
""" | |
def main(): | |
# ---------------------------------------- | |
# Preparation | |
# ---------------------------------------- | |
model_name = 'usrnet' # 'usrgan' | 'usrnet' | 'usrgan_tiny' | 'usrnet_tiny' | |
testset_name = 'set5' # test set, 'set5' | 'srbsd68' | |
test_sf = [4] if 'gan' in model_name else [2, 3, 4] # scale factor, from {1,2,3,4} | |
show_img = False # default: False | |
save_L = True # save LR image | |
save_E = True # save estimated image | |
save_LEH = False # save zoomed LR, E and H images | |
# ---------------------------------------- | |
# load testing kernels | |
# ---------------------------------------- | |
# kernels = hdf5storage.loadmat(os.path.join('kernels', 'kernels.mat'))['kernels'] | |
kernels = loadmat(os.path.join('kernels', 'kernels_12.mat'))['kernels'] | |
n_channels = 1 if 'gray' in model_name else 3 # 3 for color image, 1 for grayscale image | |
model_pool = 'model_zoo' # fixed | |
testsets = 'testsets' # fixed | |
results = 'results' # fixed | |
noise_level_img = 0 # fixed: 0, noise level for LR image | |
noise_level_model = noise_level_img # fixed, noise level of model, default 0 | |
result_name = testset_name + '_' + model_name | |
model_path = os.path.join(model_pool, model_name+'.pth') | |
# ---------------------------------------- | |
# L_path = H_path, E_path, logger | |
# ---------------------------------------- | |
L_path = os.path.join(testsets, testset_name) # L_path and H_path, fixed, for Low-quality images | |
E_path = os.path.join(results, result_name) # E_path, fixed, for Estimated images | |
util.mkdir(E_path) | |
logger_name = result_name | |
utils_logger.logger_info(logger_name, log_path=os.path.join(E_path, logger_name+'.log')) | |
logger = logging.getLogger(logger_name) | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
# ---------------------------------------- | |
# load model | |
# ---------------------------------------- | |
if 'tiny' in model_name: | |
model = net(n_iter=6, h_nc=32, in_nc=4, out_nc=3, nc=[16, 32, 64, 64], | |
nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose") | |
else: | |
model = net(n_iter=8, h_nc=64, in_nc=4, out_nc=3, nc=[64, 128, 256, 512], | |
nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose") | |
model.load_state_dict(torch.load(model_path), strict=True) | |
model.eval() | |
for key, v in model.named_parameters(): | |
v.requires_grad = False | |
number_parameters = sum(map(lambda x: x.numel(), model.parameters())) | |
model = model.to(device) | |
logger.info('Model path: {:s}'.format(model_path)) | |
logger.info('Params number: {}'.format(number_parameters)) | |
logger.info('Model_name:{}, image sigma:{}'.format(model_name, noise_level_img)) | |
logger.info(L_path) | |
L_paths = util.get_image_paths(L_path) | |
# -------------------------------- | |
# read images | |
# -------------------------------- | |
test_results_ave = OrderedDict() | |
test_results_ave['psnr_sf_k'] = [] | |
for sf in test_sf: | |
for k_index in range(kernels.shape[1]): | |
test_results = OrderedDict() | |
test_results['psnr'] = [] | |
kernel = kernels[0, k_index].astype(np.float64) | |
## other kernels | |
# kernel = utils_deblur.blurkernel_synthesis(h=25) # motion kernel | |
# kernel = utils_deblur.fspecial('gaussian', 25, 1.6) # Gaussian kernel | |
# kernel = sr.shift_pixel(kernel, sf) # pixel shift; optional | |
# kernel /= np.sum(kernel) | |
util.surf(kernel) if show_img else None | |
idx = 0 | |
for img in L_paths: | |
# -------------------------------- | |
# (1) classical degradation, img_L | |
# -------------------------------- | |
idx += 1 | |
img_name, ext = os.path.splitext(os.path.basename(img)) | |
img_H = util.imread_uint(img, n_channels=n_channels) # HR image, int8 | |
img_H = util.modcrop(img_H, np.lcm(sf,8)) # modcrop | |
# generate degraded LR image | |
img_L = ndimage.filters.convolve(img_H, kernel[..., np.newaxis], mode='wrap') # blur | |
img_L = sr.downsample_np(img_L, sf, center=False) # downsample, standard s-fold downsampler | |
img_L = util.uint2single(img_L) # uint2single | |
np.random.seed(seed=0) # for reproducibility | |
img_L += np.random.normal(0, noise_level_img, img_L.shape) # add AWGN | |
util.imshow(util.single2uint(img_L)) if show_img else None | |
x = util.single2tensor4(img_L) | |
k = util.single2tensor4(kernel[..., np.newaxis]) | |
sigma = torch.tensor(noise_level_model).float().view([1, 1, 1, 1]) | |
[x, k, sigma] = [el.to(device) for el in [x, k, sigma]] | |
# -------------------------------- | |
# (2) inference | |
# -------------------------------- | |
x = model(x, k, sf, sigma) | |
# -------------------------------- | |
# (3) img_E | |
# -------------------------------- | |
img_E = util.tensor2uint(x) | |
if save_E: | |
util.imsave(img_E, os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index+1)+'_'+model_name+'.png')) | |
# -------------------------------- | |
# (4) img_LEH | |
# -------------------------------- | |
img_L = util.single2uint(img_L) | |
if save_LEH: | |
k_v = kernel/np.max(kernel)*1.2 | |
k_v = util.single2uint(np.tile(k_v[..., np.newaxis], [1, 1, 3])) | |
k_v = cv2.resize(k_v, (3*k_v.shape[1], 3*k_v.shape[0]), interpolation=cv2.INTER_NEAREST) | |
img_I = cv2.resize(img_L, (sf*img_L.shape[1], sf*img_L.shape[0]), interpolation=cv2.INTER_NEAREST) | |
img_I[:k_v.shape[0], -k_v.shape[1]:, :] = k_v | |
img_I[:img_L.shape[0], :img_L.shape[1], :] = img_L | |
util.imshow(np.concatenate([img_I, img_E, img_H], axis=1), title='LR / Recovered / Ground-truth') if show_img else None | |
util.imsave(np.concatenate([img_I, img_E, img_H], axis=1), os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index+1)+'_LEH.png')) | |
if save_L: | |
util.imsave(img_L, os.path.join(E_path, img_name+'_x'+str(sf)+'_k'+str(k_index+1)+'_LR.png')) | |
psnr = util.calculate_psnr(img_E, img_H, border=sf**2) # change with your own border | |
test_results['psnr'].append(psnr) | |
logger.info('{:->4d}--> {:>10s} -- x{:>2d} --k{:>2d} PSNR: {:.2f}dB'.format(idx, img_name+ext, sf, k_index, psnr)) | |
ave_psnr_k = sum(test_results['psnr']) / len(test_results['psnr']) | |
logger.info('------> Average PSNR(RGB) of ({}) scale factor: ({}), kernel: ({}) sigma: ({}): {:.2f} dB'.format(testset_name, sf, k_index+1, noise_level_model, ave_psnr_k)) | |
test_results_ave['psnr_sf_k'].append(ave_psnr_k) | |
logger.info(test_results_ave['psnr_sf_k']) | |
if __name__ == '__main__': | |
main() | |