File size: 10,738 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import os 
import gradio as gr
from zhconv import convert
from src.cost_time import calculate_time
from configs import *
description = """<p style="text-align: center; font-weight: bold;">
    <span style="font-size: 28px;">Linly 智能对话系统 (Linly-Talker)</span>
    <br>
    <span style="font-size: 18px;" id="paper-info">
        [<a href="https://zhuanlan.zhihu.com/p/671006998" target="_blank">知乎</a>]
        [<a href="https://www.bilibili.com/video/BV1rN4y1a76x/" target="_blank">bilibili</a>]
        [<a href="https://github.com/Kedreamix/Linly-Talker" target="_blank">GitHub</a>]
        [<a herf="https://kedreamix.github.io/" target="_blank">个人主页</a>]
    </span>
    <br> 
    <span>Linly-Talker 是一款智能 AI 对话系统,结合了大型语言模型 (LLMs) 与视觉模型,是一种新颖的人工智能交互方式。</span>
</p>
"""

use_ref_video = False
ref_video = None
ref_info = 'pose'
use_idle_mode = False
length_of_audio = 5

@calculate_time
def Asr(audio):
    try:
        question = asr.transcribe(audio)
        question = convert(question, 'zh-cn')
    except Exception as e:
        print("ASR Error: ", e)
        question = 'Gradio存在一些bug,麦克风模式有时候可能音频还未传入,请重新点击一下语音识别即可'
        gr.Warning(question)
    return question

@calculate_time
def LLM_response(question, voice = 'zh-CN-XiaoxiaoNeural', rate = 0, volume = 0, pitch = 0):
    answer = llm.generate(question)
    print(answer)
    try:
        os.system(f'edge-tts --text "{answer}" --voice {voice} --write-media answer.wav --write-subtitles answer.vtt')
    except:
        tts.predict(answer, voice, rate, volume, pitch , 'answer.wav', 'answer.vtt')
    return 'answer.wav', 'answer.vtt', answer

@calculate_time
def Talker_response(text, voice, rate, volume, pitch, source_video, bbox_shift):
    voice = 'zh-CN-XiaoxiaoNeural' if voice not in tts.SUPPORTED_VOICE else voice
    driven_audio, driven_vtt, _ = LLM_response(text, voice, rate, volume, pitch)
    
    video = musetalker.inference_noprepare(driven_audio, 
                                            source_video, 
                                            bbox_shift) 
    
    if driven_vtt:
        return (video, driven_vtt)
    else:
        return video

def main():
    
    with gr.Blocks(analytics_enabled=False, title = 'Linly-Talker') as inference:
        gr.HTML(description)
        with gr.Row(equal_height=False):
            with gr.Column(variant='panel'):
                with gr.Tabs(elem_id="sadtalker_source_image"):
                        with gr.TabItem('MuseV Video'):
                            gr.Markdown("MuseV: need help? please visit MuseVDemo to generate Video https://huggingface.co/spaces/AnchorFake/MuseVDemo")
                            with gr.Row():
                                source_video = gr.Video(label="Reference Video",sources=['upload'])
                            gr.Markdown("BBox_shift 推荐值下限,在生成初始结果后生成相应的 bbox 范围。如果结果不理想,可以根据该参考值进行调整。\n一般来说,在我们的实验观察中,我们发现正值(向下半部分移动)通常会增加嘴巴的张开度,而负值(向上半部分移动)通常会减少嘴巴的张开度。然而,需要注意的是,这并不是绝对的规则,用户可能需要根据他们的具体需求和期望效果来调整该参数。")
                            with gr.Row():
                                bbox_shift = gr.Number(label="BBox_shift value, px", value=0)
                                bbox_shift_scale = gr.Textbox(label="bbox_shift_scale", 
                                                              value="",interactive=False)

                source_video.change(fn=musetalker.prepare_material, inputs=[source_video, bbox_shift], outputs=[source_video, bbox_shift_scale])
                with gr.Tabs(elem_id="question_audio"):
                    with gr.TabItem('对话'):
                        with gr.Column(variant='panel'):
                            question_audio = gr.Audio(sources=['microphone','upload'], type="filepath", label = '语音对话')
                            input_text = gr.Textbox(label="Input Text", lines=3, info = '文字对话')
                            with gr.Accordion("Advanced Settings",
                                        open=False,
                                        visible=True) as parameter_article:
                                voice = gr.Dropdown(tts.SUPPORTED_VOICE, 
                                                    value='zh-CN-XiaoxiaoNeural', 
                                                    label="Voice")
                                rate = gr.Slider(minimum=-100,
                                                    maximum=100,
                                                    value=0,
                                                    step=1.0,
                                                    label='Rate')
                                volume = gr.Slider(minimum=0,
                                                        maximum=100,
                                                        value=100,
                                                        step=1,
                                                        label='Volume')
                                pitch = gr.Slider(minimum=-100,
                                                    maximum=100,
                                                    value=0,
                                                    step=1,
                                                    label='Pitch')

                            asr_text = gr.Button('语音识别(语音对话后点击)')
                            asr_text.click(fn=Asr,inputs=[question_audio],outputs=[input_text])
                
                            
                with gr.Tabs(): 
                    gr.Markdown("## Text Examples")
                    examples =  [
                        ['应对压力最有效的方法是什么?'],
                        ['如何进行时间管理?'],
                        ['为什么有些人选择使用纸质地图或寻求方向,而不是依赖GPS设备或智能手机应用程序?'],
                        ['近日,苹果公司起诉高通公司,状告其未按照相关合约进行合作,高通方面尚未回应。这句话中“其”指的是谁?'],
                        ['三年级同学种树80颗,四、五年级种的棵树比三年级种的2倍多14棵,三个年级共种树多少棵?'],
                        ['撰写一篇交响乐音乐会评论,讨论乐团的表演和观众的整体体验。'],
                        ['翻译成中文:Luck is a dividend of sweat. The more you sweat, the luckier you get.'],
                    ]
                    gr.Examples(
                        examples = examples,
                        inputs = [input_text],
                    )
                    
            # driven_audio = 'answer.wav'           
            with gr.Column(variant='panel'):                     
                with gr.TabItem("MuseTalk Video"):
                    gen_video = gr.Video(label="Generated video", format="mp4")
                submit = gr.Button('Generate', elem_id="sadtalker_generate", variant='primary')
                examples = [os.path.join('Musetalk/data/video', video) for video in os.listdir("Musetalk/data/video")]
                # ['Musetalk/data/video/yongen_musev.mp4', 'Musetalk/data/video/musk_musev.mp4', 'Musetalk/data/video/monalisa_musev.mp4', 'Musetalk/data/video/sun_musev.mp4', 'Musetalk/data/video/seaside4_musev.mp4', 'Musetalk/data/video/sit_musev.mp4', 'Musetalk/data/video/man_musev.mp4']
                
                gr.Markdown("## MuseV Video Examples")
                gr.Examples(
                    examples=[
                        ['Musetalk/data/video/yongen_musev.mp4', 5],
                        ['Musetalk/data/video/musk_musev.mp4', 5],
                        ['Musetalk/data/video/monalisa_musev.mp4', 5],
                        ['Musetalk/data/video/sun_musev.mp4', 5],
                        ['Musetalk/data/video/seaside4_musev.mp4', 5],
                        ['Musetalk/data/video/sit_musev.mp4', 5],
                        ['Musetalk/data/video/man_musev.mp4', 5]
                        ],
                    inputs =[source_video, bbox_shift], 
                )

            submit.click(
                fn=Talker_response,
                inputs=[input_text,
                        voice, rate, volume, pitch,
                        source_video, bbox_shift], 
                outputs=[gen_video]
                )
    return inference

def success_print(text):
    print(f"\033[1;31;42m{text}\033[0m")

def error_print(text):
    print(f"\033[1;37;41m{text}\033[0m")
    
if __name__ == "__main__":
    # llm = LLM(mode='offline').init_model('Linly', 'Linly-AI/Chinese-LLaMA-2-7B-hf')
    # llm = LLM(mode='offline').init_model('Gemini', 'gemini-pro', api_key = "your api key")
    # llm = LLM(mode='offline').init_model('Qwen', 'Qwen/Qwen-1_8B-Chat')
    try:
        from LLM import LLM
        llm = LLM(mode=mode).init_model('Qwen', 'Qwen/Qwen-1_8B-Chat')
    except Exception as e:
        error_print(f"LLM is not ready, error: {e}")
        error_print("如果使用LLM,请先下载有关的LLM模型")
        
    try:
        from TTS import EdgeTTS
        tts = EdgeTTS()
    except Exception as e:
        error_print(f"EdgeTTS Error: {e}")
        error_print("如果使用EdgeTTS,请先下载EdgeTTS库,测试EdgeTTS是否可用")
    
    try:
        from ASR import WhisperASR
        asr = WhisperASR('base')
    except Exception as e:
        error_print(f"ASR Error: {e}")
        error_print("如果使用ASR,请先下载ASR相关模型,如Whisper")

    try:
        from TFG import MuseTalk_RealTime
        musetalker = MuseTalk_RealTime()
        musetalker.init_model
    except Exception as e:
        error_print(f"MuseTalk Error: {e}")
        error_print("如果使用MuseTalk,请先下载MuseTalk相关模型")
    gr.close_all()
    demo = main()
    demo.queue()
    
    # demo.launch()
    demo.launch(server_name=ip, # 本地端口localhost:127.0.0.1 全局端口转发:"0.0.0.0"
                server_port=port,
                # 似乎在Gradio4.0以上版本可以不使用证书也可以进行麦克风对话
                # ssl_certfile=ssl_certfile,
                # ssl_keyfile=ssl_keyfile,
                # ssl_verify=False,                
                debug=True)