Spaces:
Running
Running
File size: 8,564 Bytes
7088d16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import unittest
from itertools import product
import torch
from pytorch3d.ops import sample_points_from_meshes
from pytorch3d.ops.ball_query import ball_query
from pytorch3d.ops.knn import _KNN
from pytorch3d.utils import ico_sphere
from .common_testing import get_random_cuda_device, TestCaseMixin
class TestBallQuery(TestCaseMixin, unittest.TestCase):
def setUp(self) -> None:
super().setUp()
torch.manual_seed(1)
@staticmethod
def _ball_query_naive(
p1, p2, lengths1, lengths2, K: int, radius: float
) -> torch.Tensor:
"""
Naive PyTorch implementation of ball query.
"""
N, P1, D = p1.shape
_N, P2, _D = p2.shape
assert N == _N and D == _D
if lengths1 is None:
lengths1 = torch.full((N,), P1, dtype=torch.int64, device=p1.device)
if lengths2 is None:
lengths2 = torch.full((N,), P2, dtype=torch.int64, device=p1.device)
radius2 = radius * radius
dists = torch.zeros((N, P1, K), dtype=torch.float32, device=p1.device)
idx = torch.full((N, P1, K), fill_value=-1, dtype=torch.int64, device=p1.device)
# Iterate through the batches
for n in range(N):
num1 = lengths1[n].item()
num2 = lengths2[n].item()
# Iterate through the points in the p1
for i in range(num1):
# Iterate through the points in the p2
count = 0
for j in range(num2):
dist = p2[n, j] - p1[n, i]
dist2 = (dist * dist).sum()
if dist2 < radius2 and count < K:
dists[n, i, count] = dist2
idx[n, i, count] = j
count += 1
return _KNN(dists=dists, idx=idx, knn=None)
def _ball_query_vs_python_square_helper(self, device):
Ns = [1, 4]
Ds = [3, 5, 8]
P1s = [8, 24]
P2s = [8, 16, 32]
Ks = [1, 5]
Rs = [3, 5]
factors = [Ns, Ds, P1s, P2s, Ks, Rs]
for N, D, P1, P2, K, R in product(*factors):
x = torch.randn(N, P1, D, device=device, requires_grad=True)
x_cuda = x.clone().detach()
x_cuda.requires_grad_(True)
y = torch.randn(N, P2, D, device=device, requires_grad=True)
y_cuda = y.clone().detach()
y_cuda.requires_grad_(True)
# forward
out1 = self._ball_query_naive(
x, y, lengths1=None, lengths2=None, K=K, radius=R
)
out2 = ball_query(x_cuda, y_cuda, K=K, radius=R)
# Check dists
self.assertClose(out1.dists, out2.dists)
# Check idx
self.assertTrue(torch.all(out1.idx == out2.idx))
# backward
grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
loss1 = (out1.dists * grad_dist).sum()
loss1.backward()
loss2 = (out2.dists * grad_dist).sum()
loss2.backward()
self.assertClose(x_cuda.grad, x.grad, atol=5e-6)
self.assertClose(y_cuda.grad, y.grad, atol=5e-6)
def test_ball_query_vs_python_square_cpu(self):
device = torch.device("cpu")
self._ball_query_vs_python_square_helper(device)
def test_ball_query_vs_python_square_cuda(self):
device = get_random_cuda_device()
self._ball_query_vs_python_square_helper(device)
def _ball_query_vs_python_ragged_helper(self, device):
Ns = [1, 4]
Ds = [3, 5, 8]
P1s = [8, 24]
P2s = [8, 16, 32]
Ks = [2, 3, 10]
Rs = [1.4, 5] # radius
factors = [Ns, Ds, P1s, P2s, Ks, Rs]
for N, D, P1, P2, K, R in product(*factors):
x = torch.rand((N, P1, D), device=device, requires_grad=True)
y = torch.rand((N, P2, D), device=device, requires_grad=True)
lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)
x_csrc = x.clone().detach()
x_csrc.requires_grad_(True)
y_csrc = y.clone().detach()
y_csrc.requires_grad_(True)
# forward
out1 = self._ball_query_naive(
x, y, lengths1=lengths1, lengths2=lengths2, K=K, radius=R
)
out2 = ball_query(
x_csrc,
y_csrc,
lengths1=lengths1,
lengths2=lengths2,
K=K,
radius=R,
)
self.assertClose(out1.idx, out2.idx)
self.assertClose(out1.dists, out2.dists)
# backward
grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
loss1 = (out1.dists * grad_dist).sum()
loss1.backward()
loss2 = (out2.dists * grad_dist).sum()
loss2.backward()
self.assertClose(x_csrc.grad, x.grad, atol=5e-6)
self.assertClose(y_csrc.grad, y.grad, atol=5e-6)
def test_ball_query_vs_python_ragged_cpu(self):
device = torch.device("cpu")
self._ball_query_vs_python_ragged_helper(device)
def test_ball_query_vs_python_ragged_cuda(self):
device = get_random_cuda_device()
self._ball_query_vs_python_ragged_helper(device)
def test_ball_query_output_simple(self):
device = get_random_cuda_device()
N, P1, P2, K = 5, 8, 16, 4
sphere = ico_sphere(level=2, device=device).extend(N)
points_1 = sample_points_from_meshes(sphere, P1)
points_2 = sample_points_from_meshes(sphere, P2) * 5.0
radius = 6.0
naive_out = self._ball_query_naive(
points_1, points_2, lengths1=None, lengths2=None, K=K, radius=radius
)
cuda_out = ball_query(points_1, points_2, K=K, radius=radius)
# All points should have N sample neighbors as radius is large
# Zero is a valid index but can only be present once (i.e. no zero padding)
naive_out_zeros = (naive_out.idx == 0).sum(dim=-1).max()
cuda_out_zeros = (cuda_out.idx == 0).sum(dim=-1).max()
self.assertTrue(naive_out_zeros == 0 or naive_out_zeros == 1)
self.assertTrue(cuda_out_zeros == 0 or cuda_out_zeros == 1)
# All points should now have zero sample neighbors as radius is small
radius = 0.5
naive_out = self._ball_query_naive(
points_1, points_2, lengths1=None, lengths2=None, K=K, radius=radius
)
cuda_out = ball_query(points_1, points_2, K=K, radius=radius)
naive_out_allzeros = (naive_out.idx == -1).all()
cuda_out_allzeros = (cuda_out.idx == -1).sum()
self.assertTrue(naive_out_allzeros)
self.assertTrue(cuda_out_allzeros)
@staticmethod
def ball_query_square(
N: int, P1: int, P2: int, D: int, K: int, radius: float, device: str
):
device = torch.device(device)
pts1 = torch.randn(N, P1, D, device=device, requires_grad=True)
pts2 = torch.randn(N, P2, D, device=device, requires_grad=True)
grad_dists = torch.randn(N, P1, K, device=device)
torch.cuda.synchronize()
def output():
out = ball_query(pts1, pts2, K=K, radius=radius)
loss = (out.dists * grad_dists).sum()
loss.backward()
torch.cuda.synchronize()
return output
@staticmethod
def ball_query_ragged(
N: int, P1: int, P2: int, D: int, K: int, radius: float, device: str
):
device = torch.device(device)
pts1 = torch.rand((N, P1, D), device=device, requires_grad=True)
pts2 = torch.rand((N, P2, D), device=device, requires_grad=True)
lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)
grad_dists = torch.randn(N, P1, K, device=device)
torch.cuda.synchronize()
def output():
out = ball_query(
pts1, pts2, lengths1=lengths1, lengths2=lengths2, K=K, radius=radius
)
loss = (out.dists * grad_dists).sum()
loss.backward()
torch.cuda.synchronize()
return output
|