File size: 8,564 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest
from itertools import product

import torch
from pytorch3d.ops import sample_points_from_meshes
from pytorch3d.ops.ball_query import ball_query
from pytorch3d.ops.knn import _KNN
from pytorch3d.utils import ico_sphere

from .common_testing import get_random_cuda_device, TestCaseMixin


class TestBallQuery(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(1)

    @staticmethod
    def _ball_query_naive(
        p1, p2, lengths1, lengths2, K: int, radius: float
    ) -> torch.Tensor:
        """
        Naive PyTorch implementation of ball query.
        """
        N, P1, D = p1.shape
        _N, P2, _D = p2.shape

        assert N == _N and D == _D

        if lengths1 is None:
            lengths1 = torch.full((N,), P1, dtype=torch.int64, device=p1.device)
        if lengths2 is None:
            lengths2 = torch.full((N,), P2, dtype=torch.int64, device=p1.device)

        radius2 = radius * radius
        dists = torch.zeros((N, P1, K), dtype=torch.float32, device=p1.device)
        idx = torch.full((N, P1, K), fill_value=-1, dtype=torch.int64, device=p1.device)

        # Iterate through the batches
        for n in range(N):
            num1 = lengths1[n].item()
            num2 = lengths2[n].item()

            # Iterate through the points in the p1
            for i in range(num1):
                # Iterate through the points in the p2
                count = 0
                for j in range(num2):
                    dist = p2[n, j] - p1[n, i]
                    dist2 = (dist * dist).sum()
                    if dist2 < radius2 and count < K:
                        dists[n, i, count] = dist2
                        idx[n, i, count] = j
                        count += 1

        return _KNN(dists=dists, idx=idx, knn=None)

    def _ball_query_vs_python_square_helper(self, device):
        Ns = [1, 4]
        Ds = [3, 5, 8]
        P1s = [8, 24]
        P2s = [8, 16, 32]
        Ks = [1, 5]
        Rs = [3, 5]
        factors = [Ns, Ds, P1s, P2s, Ks, Rs]
        for N, D, P1, P2, K, R in product(*factors):
            x = torch.randn(N, P1, D, device=device, requires_grad=True)
            x_cuda = x.clone().detach()
            x_cuda.requires_grad_(True)
            y = torch.randn(N, P2, D, device=device, requires_grad=True)
            y_cuda = y.clone().detach()
            y_cuda.requires_grad_(True)

            # forward
            out1 = self._ball_query_naive(
                x, y, lengths1=None, lengths2=None, K=K, radius=R
            )
            out2 = ball_query(x_cuda, y_cuda, K=K, radius=R)

            # Check dists
            self.assertClose(out1.dists, out2.dists)
            # Check idx
            self.assertTrue(torch.all(out1.idx == out2.idx))

            # backward
            grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
            loss1 = (out1.dists * grad_dist).sum()
            loss1.backward()
            loss2 = (out2.dists * grad_dist).sum()
            loss2.backward()

            self.assertClose(x_cuda.grad, x.grad, atol=5e-6)
            self.assertClose(y_cuda.grad, y.grad, atol=5e-6)

    def test_ball_query_vs_python_square_cpu(self):
        device = torch.device("cpu")
        self._ball_query_vs_python_square_helper(device)

    def test_ball_query_vs_python_square_cuda(self):
        device = get_random_cuda_device()
        self._ball_query_vs_python_square_helper(device)

    def _ball_query_vs_python_ragged_helper(self, device):
        Ns = [1, 4]
        Ds = [3, 5, 8]
        P1s = [8, 24]
        P2s = [8, 16, 32]
        Ks = [2, 3, 10]
        Rs = [1.4, 5]  # radius
        factors = [Ns, Ds, P1s, P2s, Ks, Rs]
        for N, D, P1, P2, K, R in product(*factors):
            x = torch.rand((N, P1, D), device=device, requires_grad=True)
            y = torch.rand((N, P2, D), device=device, requires_grad=True)
            lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
            lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)

            x_csrc = x.clone().detach()
            x_csrc.requires_grad_(True)
            y_csrc = y.clone().detach()
            y_csrc.requires_grad_(True)

            # forward
            out1 = self._ball_query_naive(
                x, y, lengths1=lengths1, lengths2=lengths2, K=K, radius=R
            )
            out2 = ball_query(
                x_csrc,
                y_csrc,
                lengths1=lengths1,
                lengths2=lengths2,
                K=K,
                radius=R,
            )

            self.assertClose(out1.idx, out2.idx)
            self.assertClose(out1.dists, out2.dists)

            # backward
            grad_dist = torch.ones((N, P1, K), dtype=torch.float32, device=device)
            loss1 = (out1.dists * grad_dist).sum()
            loss1.backward()
            loss2 = (out2.dists * grad_dist).sum()
            loss2.backward()

            self.assertClose(x_csrc.grad, x.grad, atol=5e-6)
            self.assertClose(y_csrc.grad, y.grad, atol=5e-6)

    def test_ball_query_vs_python_ragged_cpu(self):
        device = torch.device("cpu")
        self._ball_query_vs_python_ragged_helper(device)

    def test_ball_query_vs_python_ragged_cuda(self):
        device = get_random_cuda_device()
        self._ball_query_vs_python_ragged_helper(device)

    def test_ball_query_output_simple(self):
        device = get_random_cuda_device()
        N, P1, P2, K = 5, 8, 16, 4
        sphere = ico_sphere(level=2, device=device).extend(N)
        points_1 = sample_points_from_meshes(sphere, P1)
        points_2 = sample_points_from_meshes(sphere, P2) * 5.0
        radius = 6.0

        naive_out = self._ball_query_naive(
            points_1, points_2, lengths1=None, lengths2=None, K=K, radius=radius
        )
        cuda_out = ball_query(points_1, points_2, K=K, radius=radius)

        # All points should have N sample neighbors as radius is large
        # Zero is a valid index but can only be present once (i.e. no zero padding)
        naive_out_zeros = (naive_out.idx == 0).sum(dim=-1).max()
        cuda_out_zeros = (cuda_out.idx == 0).sum(dim=-1).max()
        self.assertTrue(naive_out_zeros == 0 or naive_out_zeros == 1)
        self.assertTrue(cuda_out_zeros == 0 or cuda_out_zeros == 1)

        # All points should now have zero sample neighbors as radius is small
        radius = 0.5
        naive_out = self._ball_query_naive(
            points_1, points_2, lengths1=None, lengths2=None, K=K, radius=radius
        )
        cuda_out = ball_query(points_1, points_2, K=K, radius=radius)
        naive_out_allzeros = (naive_out.idx == -1).all()
        cuda_out_allzeros = (cuda_out.idx == -1).sum()
        self.assertTrue(naive_out_allzeros)
        self.assertTrue(cuda_out_allzeros)

    @staticmethod
    def ball_query_square(
        N: int, P1: int, P2: int, D: int, K: int, radius: float, device: str
    ):
        device = torch.device(device)
        pts1 = torch.randn(N, P1, D, device=device, requires_grad=True)
        pts2 = torch.randn(N, P2, D, device=device, requires_grad=True)
        grad_dists = torch.randn(N, P1, K, device=device)
        torch.cuda.synchronize()

        def output():
            out = ball_query(pts1, pts2, K=K, radius=radius)
            loss = (out.dists * grad_dists).sum()
            loss.backward()
            torch.cuda.synchronize()

        return output

    @staticmethod
    def ball_query_ragged(
        N: int, P1: int, P2: int, D: int, K: int, radius: float, device: str
    ):
        device = torch.device(device)
        pts1 = torch.rand((N, P1, D), device=device, requires_grad=True)
        pts2 = torch.rand((N, P2, D), device=device, requires_grad=True)
        lengths1 = torch.randint(low=1, high=P1, size=(N,), device=device)
        lengths2 = torch.randint(low=1, high=P2, size=(N,), device=device)
        grad_dists = torch.randn(N, P1, K, device=device)
        torch.cuda.synchronize()

        def output():
            out = ball_query(
                pts1, pts2, lengths1=lengths1, lengths2=lengths2, K=K, radius=radius
            )
            loss = (out.dists * grad_dists).sum()
            loss.backward()
            torch.cuda.synchronize()

        return output