File size: 6,662 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest

import numpy as np
import torch
from pytorch3d.ops import corresponding_cameras_alignment
from pytorch3d.renderer.cameras import (
    OpenGLOrthographicCameras,
    OpenGLPerspectiveCameras,
    SfMOrthographicCameras,
    SfMPerspectiveCameras,
)
from pytorch3d.transforms.rotation_conversions import random_rotations
from pytorch3d.transforms.so3 import so3_exp_map, so3_relative_angle

from .common_testing import TestCaseMixin
from .test_cameras import init_random_cameras


class TestCamerasAlignment(TestCaseMixin, unittest.TestCase):
    def setUp(self) -> None:
        super().setUp()
        torch.manual_seed(42)
        np.random.seed(42)

    def test_corresponding_cameras_alignment(self):
        """
        Checks the corresponding_cameras_alignment function.
        """
        device = torch.device("cuda:0")

        # try few different random setups
        for _ in range(3):
            for estimate_scale in (True, False):
                # init true alignment transform
                R_align_gt = random_rotations(1, device=device)[0]
                T_align_gt = torch.randn(3, dtype=torch.float32, device=device)

                # init true scale
                if estimate_scale:
                    s_align_gt = torch.randn(
                        1, dtype=torch.float32, device=device
                    ).exp()
                else:
                    s_align_gt = torch.tensor(1.0, dtype=torch.float32, device=device)

                for cam_type in (
                    SfMOrthographicCameras,
                    OpenGLPerspectiveCameras,
                    OpenGLOrthographicCameras,
                    SfMPerspectiveCameras,
                ):
                    # try well-determined and underdetermined cases
                    for batch_size in (10, 4, 3, 2, 1):
                        # get random cameras
                        cameras = init_random_cameras(
                            cam_type, batch_size, random_z=True
                        ).to(device)
                        # try all alignment modes
                        for mode in ("extrinsics", "centers"):
                            # try different noise levels
                            for add_noise in (0.0, 0.01, 1e-4):
                                self._corresponding_cameras_alignment_test_case(
                                    cameras,
                                    R_align_gt,
                                    T_align_gt,
                                    s_align_gt,
                                    estimate_scale,
                                    mode,
                                    add_noise,
                                )

    def _corresponding_cameras_alignment_test_case(
        self,
        cameras,
        R_align_gt,
        T_align_gt,
        s_align_gt,
        estimate_scale,
        mode,
        add_noise,
    ):
        batch_size = cameras.R.shape[0]

        # get target camera centers
        R_new = torch.bmm(R_align_gt[None].expand_as(cameras.R), cameras.R)
        T_new = (
            torch.bmm(T_align_gt[None, None].repeat(batch_size, 1, 1), cameras.R)[:, 0]
            + cameras.T
        ) * s_align_gt

        if add_noise != 0.0:
            R_new = torch.bmm(R_new, so3_exp_map(torch.randn_like(T_new) * add_noise))
            T_new += torch.randn_like(T_new) * add_noise

        # create new cameras from R_new and T_new
        cameras_tgt = cameras.clone()
        cameras_tgt.R = R_new
        cameras_tgt.T = T_new

        # align cameras and cameras_tgt
        cameras_aligned = corresponding_cameras_alignment(
            cameras, cameras_tgt, estimate_scale=estimate_scale, mode=mode
        )

        if batch_size <= 2 and mode == "centers":
            # underdetermined case - check only the center alignment error
            # since the rotation and translation are ambiguous here
            self.assertClose(
                cameras_aligned.get_camera_center(),
                cameras_tgt.get_camera_center(),
                atol=max(add_noise * 7.0, 1e-4),
            )

        else:

            def _rmse(a):
                return (torch.norm(a, dim=1, p=2) ** 2).mean().sqrt()

            if add_noise != 0.0:
                # in a noisy case check mean rotation/translation error for
                # extrinsic alignment and root mean center error for center alignment
                if mode == "centers":
                    self.assertNormsClose(
                        cameras_aligned.get_camera_center(),
                        cameras_tgt.get_camera_center(),
                        _rmse,
                        atol=max(add_noise * 10.0, 1e-4),
                    )
                elif mode == "extrinsics":
                    angle_err = so3_relative_angle(
                        cameras_aligned.R, cameras_tgt.R, cos_angle=True
                    ).mean()
                    self.assertClose(
                        angle_err, torch.ones_like(angle_err), atol=add_noise * 0.03
                    )
                    self.assertNormsClose(
                        cameras_aligned.T, cameras_tgt.T, _rmse, atol=add_noise * 7.0
                    )
                else:
                    raise ValueError(mode)

            else:
                # compare the rotations and translations of cameras
                self.assertClose(cameras_aligned.R, cameras_tgt.R, atol=3e-4)
                self.assertClose(cameras_aligned.T, cameras_tgt.T, atol=3e-4)
                # compare the centers
                self.assertClose(
                    cameras_aligned.get_camera_center(),
                    cameras_tgt.get_camera_center(),
                    atol=3e-4,
                )

    @staticmethod
    def corresponding_cameras_alignment(
        batch_size: int, estimate_scale: bool, mode: str, cam_type=SfMPerspectiveCameras
    ):
        device = torch.device("cuda:0")
        cameras_src, cameras_tgt = [
            init_random_cameras(cam_type, batch_size, random_z=True).to(device)
            for _ in range(2)
        ]

        torch.cuda.synchronize()

        def compute_corresponding_cameras_alignment():
            corresponding_cameras_alignment(
                cameras_src, cameras_tgt, estimate_scale=estimate_scale, mode=mode
            )
            torch.cuda.synchronize()

        return compute_corresponding_cameras_alignment