File size: 12,173 Bytes
7088d16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.

import unittest

import torch
from pytorch3d.ops import cubify
from pytorch3d.renderer.mesh.textures import TexturesAtlas

from .common_testing import TestCaseMixin


class TestCubify(TestCaseMixin, unittest.TestCase):
    def test_allempty(self):
        N, V = 32, 14
        device = torch.device("cuda:0")
        voxels = torch.zeros((N, V, V, V), dtype=torch.float32, device=device)
        meshes = cubify(voxels, 0.5)
        self.assertTrue(meshes.isempty())

    def test_cubify(self):
        N, V = 4, 2
        device = torch.device("cuda:0")
        voxels = torch.zeros((N, V, V, V), dtype=torch.float32, device=device)

        # 1st example: (top left corner, znear) is on
        voxels[0, 0, 0, 0] = 1.0
        # 2nd example: all are on
        voxels[1] = 1.0
        # 3rd example: empty
        # 4th example
        voxels[3, :, :, 1] = 1.0
        voxels[3, 1, 1, 0] = 1.0

        # compute cubify
        meshes = cubify(voxels, 0.5)

        # 1st-check
        verts, faces = meshes.get_mesh_verts_faces(0)
        self.assertClose(faces.max().cpu(), torch.tensor(verts.size(0) - 1))
        self.assertClose(
            verts,
            torch.tensor(
                [
                    [-1.0, -1.0, -1.0],
                    [-1.0, -1.0, 1.0],
                    [1.0, -1.0, -1.0],
                    [1.0, -1.0, 1.0],
                    [-1.0, 1.0, -1.0],
                    [-1.0, 1.0, 1.0],
                    [1.0, 1.0, -1.0],
                    [1.0, 1.0, 1.0],
                ],
                dtype=torch.float32,
                device=device,
            ),
        )
        self.assertClose(
            faces,
            torch.tensor(
                [
                    [0, 1, 4],
                    [1, 5, 4],
                    [4, 5, 6],
                    [5, 7, 6],
                    [0, 4, 6],
                    [0, 6, 2],
                    [0, 3, 1],
                    [0, 2, 3],
                    [6, 7, 3],
                    [6, 3, 2],
                    [1, 7, 5],
                    [1, 3, 7],
                ],
                dtype=torch.int64,
                device=device,
            ),
        )
        # 2nd-check
        verts, faces = meshes.get_mesh_verts_faces(1)
        self.assertClose(faces.max().cpu(), torch.tensor(verts.size(0) - 1))
        self.assertClose(
            verts,
            torch.tensor(
                [
                    [-1.0, -1.0, -1.0],
                    [-1.0, -1.0, 1.0],
                    [-1.0, -1.0, 3.0],
                    [1.0, -1.0, -1.0],
                    [1.0, -1.0, 1.0],
                    [1.0, -1.0, 3.0],
                    [3.0, -1.0, -1.0],
                    [3.0, -1.0, 1.0],
                    [3.0, -1.0, 3.0],
                    [-1.0, 1.0, -1.0],
                    [-1.0, 1.0, 1.0],
                    [-1.0, 1.0, 3.0],
                    [1.0, 1.0, -1.0],
                    [1.0, 1.0, 3.0],
                    [3.0, 1.0, -1.0],
                    [3.0, 1.0, 1.0],
                    [3.0, 1.0, 3.0],
                    [-1.0, 3.0, -1.0],
                    [-1.0, 3.0, 1.0],
                    [-1.0, 3.0, 3.0],
                    [1.0, 3.0, -1.0],
                    [1.0, 3.0, 1.0],
                    [1.0, 3.0, 3.0],
                    [3.0, 3.0, -1.0],
                    [3.0, 3.0, 1.0],
                    [3.0, 3.0, 3.0],
                ],
                dtype=torch.float32,
                device=device,
            ),
        )
        self.assertClose(
            faces,
            torch.tensor(
                [
                    [0, 1, 9],
                    [1, 10, 9],
                    [0, 9, 12],
                    [0, 12, 3],
                    [0, 4, 1],
                    [0, 3, 4],
                    [1, 2, 10],
                    [2, 11, 10],
                    [1, 5, 2],
                    [1, 4, 5],
                    [2, 13, 11],
                    [2, 5, 13],
                    [3, 12, 14],
                    [3, 14, 6],
                    [3, 7, 4],
                    [3, 6, 7],
                    [14, 15, 7],
                    [14, 7, 6],
                    [4, 8, 5],
                    [4, 7, 8],
                    [15, 16, 8],
                    [15, 8, 7],
                    [5, 16, 13],
                    [5, 8, 16],
                    [9, 10, 17],
                    [10, 18, 17],
                    [17, 18, 20],
                    [18, 21, 20],
                    [9, 17, 20],
                    [9, 20, 12],
                    [10, 11, 18],
                    [11, 19, 18],
                    [18, 19, 21],
                    [19, 22, 21],
                    [11, 22, 19],
                    [11, 13, 22],
                    [20, 21, 23],
                    [21, 24, 23],
                    [12, 20, 23],
                    [12, 23, 14],
                    [23, 24, 15],
                    [23, 15, 14],
                    [21, 22, 24],
                    [22, 25, 24],
                    [24, 25, 16],
                    [24, 16, 15],
                    [13, 25, 22],
                    [13, 16, 25],
                ],
                dtype=torch.int64,
                device=device,
            ),
        )

        # 3rd-check
        verts, faces = meshes.get_mesh_verts_faces(2)
        self.assertTrue(verts.size(0) == 0)
        self.assertTrue(faces.size(0) == 0)

        # 4th-check
        verts, faces = meshes.get_mesh_verts_faces(3)
        self.assertClose(
            verts,
            torch.tensor(
                [
                    [1.0, -1.0, -1.0],
                    [1.0, -1.0, 1.0],
                    [1.0, -1.0, 3.0],
                    [3.0, -1.0, -1.0],
                    [3.0, -1.0, 1.0],
                    [3.0, -1.0, 3.0],
                    [-1.0, 1.0, 1.0],
                    [-1.0, 1.0, 3.0],
                    [1.0, 1.0, -1.0],
                    [1.0, 1.0, 1.0],
                    [1.0, 1.0, 3.0],
                    [3.0, 1.0, -1.0],
                    [3.0, 1.0, 1.0],
                    [3.0, 1.0, 3.0],
                    [-1.0, 3.0, 1.0],
                    [-1.0, 3.0, 3.0],
                    [1.0, 3.0, -1.0],
                    [1.0, 3.0, 1.0],
                    [1.0, 3.0, 3.0],
                    [3.0, 3.0, -1.0],
                    [3.0, 3.0, 1.0],
                    [3.0, 3.0, 3.0],
                ],
                dtype=torch.float32,
                device=device,
            ),
        )
        self.assertClose(
            faces,
            torch.tensor(
                [
                    [0, 1, 8],
                    [1, 9, 8],
                    [0, 8, 11],
                    [0, 11, 3],
                    [0, 4, 1],
                    [0, 3, 4],
                    [11, 12, 4],
                    [11, 4, 3],
                    [1, 2, 9],
                    [2, 10, 9],
                    [1, 5, 2],
                    [1, 4, 5],
                    [12, 13, 5],
                    [12, 5, 4],
                    [2, 13, 10],
                    [2, 5, 13],
                    [6, 7, 14],
                    [7, 15, 14],
                    [14, 15, 17],
                    [15, 18, 17],
                    [6, 14, 17],
                    [6, 17, 9],
                    [6, 10, 7],
                    [6, 9, 10],
                    [7, 18, 15],
                    [7, 10, 18],
                    [8, 9, 16],
                    [9, 17, 16],
                    [16, 17, 19],
                    [17, 20, 19],
                    [8, 16, 19],
                    [8, 19, 11],
                    [19, 20, 12],
                    [19, 12, 11],
                    [17, 18, 20],
                    [18, 21, 20],
                    [20, 21, 13],
                    [20, 13, 12],
                    [10, 21, 18],
                    [10, 13, 21],
                ],
                dtype=torch.int64,
                device=device,
            ),
        )

    def test_align(self):
        N, V = 1, 2
        device = torch.device("cuda:0")
        voxels = torch.ones((N, V, V, V), dtype=torch.float32, device=device)

        # topleft align
        mesh = cubify(voxels, 0.5)
        verts, faces = mesh.get_mesh_verts_faces(0)
        self.assertClose(verts.min(), torch.tensor(-1.0, device=device))
        self.assertClose(verts.max(), torch.tensor(3.0, device=device))

        # corner align
        mesh = cubify(voxels, 0.5, align="corner")
        verts, faces = mesh.get_mesh_verts_faces(0)
        self.assertClose(verts.min(), torch.tensor(-1.0, device=device))
        self.assertClose(verts.max(), torch.tensor(1.0, device=device))

        # center align
        mesh = cubify(voxels, 0.5, align="center")
        verts, faces = mesh.get_mesh_verts_faces(0)
        self.assertClose(verts.min(), torch.tensor(-2.0, device=device))
        self.assertClose(verts.max(), torch.tensor(2.0, device=device))

        # invalid align
        with self.assertRaisesRegex(ValueError, "Align mode must be one of"):
            cubify(voxels, 0.5, align="")

        # invalid align
        with self.assertRaisesRegex(ValueError, "Align mode must be one of"):
            cubify(voxels, 0.5, align="topright")

        # inside occupancy, similar to GH#185 use case
        N, V = 1, 4
        voxels = torch.zeros((N, V, V, V), dtype=torch.float32, device=device)
        voxels[0, : V // 2, : V // 2, : V // 2] = 1.0
        mesh = cubify(voxels, 0.5, align="corner")
        verts, faces = mesh.get_mesh_verts_faces(0)
        self.assertClose(verts.min(), torch.tensor(-1.0, device=device))
        self.assertClose(verts.max(), torch.tensor(0.0, device=device))

    @staticmethod
    def cubify_with_init(batch_size: int, V: int):
        device = torch.device("cuda:0")
        voxels = torch.rand((batch_size, V, V, V), dtype=torch.float32, device=device)
        torch.cuda.synchronize()

        def convert():
            cubify(voxels, 0.5)
            torch.cuda.synchronize()

        return convert

    def test_cubify_with_feats(self):
        N, V = 3, 2
        device = torch.device("cuda:0")
        voxels = torch.zeros((N, V, V, V), dtype=torch.float32, device=device)
        feats = torch.zeros((N, 3, V, V, V), dtype=torch.float32, device=device)
        # fill the feats with red color
        feats[:, 0, :, :, :] = 255

        # 1st example: (top left corner, znear) is on
        voxels[0, 0, 0, 0] = 1.0
        # the color is set to green
        feats[0, :, 0, 0, 0] = torch.Tensor([0, 255, 0])
        # 2nd example: all are on
        voxels[1] = 1.0

        # 3rd example
        voxels[2, :, :, 1] = 1.0
        voxels[2, 1, 1, 0] = 1.0
        # the color is set to yellow and blue respectively
        feats[2, 1, :, :, 1] = 255
        feats[2, :, 1, 1, 0] = torch.Tensor([0, 0, 255])
        meshes = cubify(voxels, 0.5, feats=feats, align="center")
        textures = meshes.textures
        self.assertTrue(textures is not None)
        self.assertTrue(isinstance(textures, TexturesAtlas))
        faces_textures = textures.faces_verts_textures_packed()
        red = faces_textures.new_tensor([255.0, 0.0, 0.0])
        green = faces_textures.new_tensor([0.0, 255.0, 0.0])
        blue = faces_textures.new_tensor([0.0, 0.0, 255.0])
        yellow = faces_textures.new_tensor([255.0, 255.0, 0.0])

        self.assertEqual(faces_textures.shape, (100, 3, 3))
        faces_textures_ = faces_textures.flatten(end_dim=1)
        self.assertClose(faces_textures_[:36], green.expand(36, -1))
        self.assertClose(faces_textures_[36:180], red.expand(144, -1))
        self.assertClose(faces_textures_[180:228], yellow.expand(48, -1))
        self.assertClose(faces_textures_[228:258], blue.expand(30, -1))
        self.assertClose(faces_textures_[258:300], yellow.expand(42, -1))