Spaces:
Running
Running
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the BSD-style license found in the | |
# LICENSE file in the root directory of this source tree. | |
import unittest | |
import torch | |
from pytorch3d.ops import cot_laplacian, laplacian, norm_laplacian | |
from pytorch3d.structures.meshes import Meshes | |
from .common_testing import get_random_cuda_device, TestCaseMixin | |
class TestLaplacianMatrices(TestCaseMixin, unittest.TestCase): | |
def setUp(self) -> None: | |
super().setUp() | |
torch.manual_seed(1) | |
def init_mesh(self) -> Meshes: | |
V, F = 32, 64 | |
device = get_random_cuda_device() | |
# random vertices | |
verts = torch.rand((V, 3), dtype=torch.float32, device=device) | |
# random valid faces (no self circles, e.g. (v0, v0, v1)) | |
faces = torch.stack([torch.randperm(V) for f in range(F)], dim=0)[:, :3] | |
faces = faces.to(device=device) | |
return Meshes(verts=[verts], faces=[faces]) | |
def test_laplacian(self): | |
mesh = self.init_mesh() | |
verts = mesh.verts_packed() | |
edges = mesh.edges_packed() | |
V, E = verts.shape[0], edges.shape[0] | |
L = laplacian(verts, edges) | |
Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device) | |
for e in range(E): | |
e0, e1 = edges[e] | |
Lnaive[e0, e1] = 1 | |
# symetric | |
Lnaive[e1, e0] = 1 | |
deg = Lnaive.sum(1).view(-1, 1) | |
deg[deg > 0] = 1.0 / deg[deg > 0] | |
Lnaive = Lnaive * deg | |
diag = torch.eye(V, dtype=torch.float32, device=mesh.device) | |
Lnaive.masked_fill_(diag > 0, -1) | |
self.assertClose(L.to_dense(), Lnaive) | |
def test_cot_laplacian(self): | |
mesh = self.init_mesh() | |
verts = mesh.verts_packed() | |
faces = mesh.faces_packed() | |
V = verts.shape[0] | |
eps = 1e-12 | |
L, inv_areas = cot_laplacian(verts, faces, eps=eps) | |
Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device) | |
inv_areas_naive = torch.zeros((V, 1), dtype=torch.float32, device=verts.device) | |
for f in faces: | |
v0 = verts[f[0], :] | |
v1 = verts[f[1], :] | |
v2 = verts[f[2], :] | |
A = (v1 - v2).norm() | |
B = (v0 - v2).norm() | |
C = (v0 - v1).norm() | |
s = 0.5 * (A + B + C) | |
face_area = (s * (s - A) * (s - B) * (s - C)).clamp_(min=1e-12).sqrt() | |
inv_areas_naive[f[0]] += face_area | |
inv_areas_naive[f[1]] += face_area | |
inv_areas_naive[f[2]] += face_area | |
A2, B2, C2 = A * A, B * B, C * C | |
cota = (B2 + C2 - A2) / face_area / 4.0 | |
cotb = (A2 + C2 - B2) / face_area / 4.0 | |
cotc = (A2 + B2 - C2) / face_area / 4.0 | |
Lnaive[f[1], f[2]] += cota | |
Lnaive[f[2], f[0]] += cotb | |
Lnaive[f[0], f[1]] += cotc | |
# symetric | |
Lnaive[f[2], f[1]] += cota | |
Lnaive[f[0], f[2]] += cotb | |
Lnaive[f[1], f[0]] += cotc | |
idx = inv_areas_naive > 0 | |
inv_areas_naive[idx] = 1.0 / inv_areas_naive[idx] | |
self.assertClose(inv_areas, inv_areas_naive) | |
self.assertClose(L.to_dense(), Lnaive) | |
def test_norm_laplacian(self): | |
mesh = self.init_mesh() | |
verts = mesh.verts_packed() | |
edges = mesh.edges_packed() | |
V, E = verts.shape[0], edges.shape[0] | |
eps = 1e-12 | |
L = norm_laplacian(verts, edges, eps=eps) | |
Lnaive = torch.zeros((V, V), dtype=torch.float32, device=verts.device) | |
for e in range(E): | |
e0, e1 = edges[e] | |
v0 = verts[e0] | |
v1 = verts[e1] | |
w01 = 1.0 / ((v0 - v1).norm() + eps) | |
Lnaive[e0, e1] += w01 | |
Lnaive[e1, e0] += w01 | |
self.assertClose(L.to_dense(), Lnaive) | |