Spaces:
Runtime error
Runtime error
File size: 6,503 Bytes
0315018 ea129da 7bb750a ea129da 7bb750a ea129da 3b7a7ae 7bb750a ea129da 7bb750a ea129da 7bb750a ea129da f3c17dc ea129da 7bb750a ea129da 7bb750a ea129da 7bb750a ea129da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import os
from functools import lru_cache
from typing import Dict, List
import plotly.express as px
import streamlit as st
import pandas as pd
from datasets import Dataset, get_dataset_infos, load_dataset
import stanza
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import io
st.set_page_config(
page_title="Eskulap Dataset",
page_icon="馃┖",
layout="wide",
initial_sidebar_state="expanded",
)
BASE_DATASET: str = "lion-ai/pl_med_data"
read_key = os.environ.get('HF_TOKEN', None)
datasets_map = {
"znany_lekarz":
{
"display_name": "Porady",
"description": "Zbi贸r pyta艅 i odpowiedzi odno艣nie medycyny.",
"primary_column": "question",
},
"kor_epikryzy_qa":
{
"display_name": "Dokumentacja - QA",
"description": "Zbi贸r pyta艅 i odpowiedzi do zanonimizowanej dokumentacji medycznej.",
"primary_column": "content",
},
"wikipedia":
{
"display_name": "Wikipedia",
"description": "Zbi贸r pyta艅 i odpowiedzi na podstawie artyku艂贸w z Wikipedii.",
"primary_column": "question",
},
"ulotki_medyczne":
{
"display_name": "Pytania farmaceutyczne",
"description": "Zbi贸r pyta艅 i odpowiedzi na podstawie ulotek medycznych.",
"primary_column": "question",
},
}
dataset_names_map: Dict[str, str] = {k: v["display_name"] for k, v in datasets_map.items()}
reverse_dataset_names_map: Dict[str, str] = {v: k for k, v in dataset_names_map.items()}
@st.cache_resource
def load_stanza_pipeline():
return stanza.Pipeline(lang='pl', processors='tokenize,mwt,pos,lemma')
@st.cache_resource
def list_datasets() -> Dict[str, Dataset]:
"""
Retrieves a list of dataset information.
Returns:
List[Dict[str, str]]: A list of dataset information.
"""
return get_dataset_infos(BASE_DATASET, token=read_key)
def show_examples(dataset_name: str, split: str) -> None:
dataset_name = reverse_dataset_names_map.get(dataset_name, dataset_name)
dataset: Dataset = load_dataset(BASE_DATASET, dataset_name, split=f"{split}[:50]", token=read_key)
st.data_editor(dataset.to_pandas(), use_container_width=True, height=900)
def count_all_examples(datasets: Dict[str, Dataset]) -> None:
count: int = 0
for dataset_name, dataset_info in datasets.items():
count += dataset_info.num_examples
st.metric(label="Total no. of instructions", value=f"{count:,}")
def filter_splits(dataset: Dict[str, Dataset], split: str) -> Dict[str, Dataset]:
"""
Filter the dataset based on the specified split.
Args:
dataset (Dict[str, Dataset]): A dictionary containing dataset information.
split (str): The split to filter the dataset by.
Returns:
Dict[str, Dataset]: A dictionary containing the filtered dataset splits.
"""
dataset_splits: Dict[str, Dataset] = {}
for dataset_name, dataset_info in dataset.items():
if split in dataset_info.splits:
dataset_name = dataset_names_map.get(dataset_name, dataset_name)
dataset_splits[dataset_name] = dataset_info.splits[split]
return dataset_splits
@st.cache_data(show_spinner=False)
def generate_wordcloud(dataset_name, split):
dataset_name = reverse_dataset_names_map.get(dataset_name, dataset_name)
dataset: Dataset = load_dataset(BASE_DATASET, dataset_name, split=f"{split}[:500]", token=read_key)
primary_column = datasets_map[dataset_name]["primary_column"]
text = ""
progress_bar = st.progress(0, text = "Generating wordcloud...")
for i, example in enumerate(dataset[primary_column]):
doc = stanza_pipeline(example)
nouns = [word.lemma for sent in doc.sentences for word in sent.words if word.upos == 'NOUN']
text += " ".join(nouns) + " "
progress_bar.progress((i + 1) / len(dataset[primary_column]), text = f"Generating wordcloud...")
wordcloud = WordCloud(width=600, height=600, background_color='#212c2a', colormap="Greens", contour_width=0, contour_color="#212c2a").generate(text)
progress_bar.empty()
plt.figure(figsize=(6, 6), facecolor='#212c2a')
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
plt.tight_layout(pad=0)
# Save the plot to a bytes buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0, facecolor='#212c2a')
buf.seek(0)
# Display the image in Streamlit
st.image(buf, use_column_width=True)
_, col, _ = st.columns([1, 2, 1])
with col:
split: str = "processed"
datasets: Dict[str, Dataset] = list_datasets()
stanza_pipeline = load_stanza_pipeline()
# st.write(datasets)
filtered_datasets: Dict[str, Dataset] = filter_splits(datasets, split)
# st.write(filtered_datasets)
image = st.image("Eskulap.png", use_column_width=True)
count_all_examples(filtered_datasets)
distribution = {
"dataset": list(filtered_datasets.keys()),
"count": [split.num_examples for split in filtered_datasets.values()],
}
distribution_df = pd.DataFrame(distribution)
# Create a pie chart showing the number of examples per dataset
fig = px.pie(
distribution_df,
names="dataset",
values="count",
hover_name="dataset",
title=f"Data distribution",
labels={"label": "Dataset", "value": "Number of Examples"},
color_discrete_sequence=px.colors.sequential.Blugrn,
hole=0.3,
)
# Update layout for better readability
# fig.update_traces(textposition="inside", textinfo="value+label")
fig.update_traces(textposition='none')
fig.update_layout(legend_title_text="Datasets", uniformtext_minsize=12, uniformtext_mode="hide")
chart = st.plotly_chart(fig, use_container_width=True)
dataset_name = st.selectbox("Select a dataset", list(filtered_datasets.keys()))
st.write(f"### {dataset_name}")
st.write(datasets_map[reverse_dataset_names_map.get(dataset_name)]["description"])
st.markdown("***")
col1, col2 = st.columns(2)
with col1:
st.write(f"### Sample data")
show_examples(dataset_name, split)
with col2:
st.write(f"### Wordcloud")
generate_wordcloud(dataset_name, split)
_, col, _ = st.columns([1, 2, 1])
with col:
st.button("Made with 鉂わ笍 by thelion.ai", use_container_width=True, disabled=True)
st.write("Intersted in the project? Contact us : contact@thelion.ai")
|