Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import re | |
import math | |
import json | |
import argparse | |
import warnings | |
import torch | |
import decord | |
import numpy as np | |
import transformers | |
from PIL import Image | |
from tqdm import tqdm | |
from decord import VideoReader, cpu | |
from torch.utils.data import Dataset, DataLoader | |
from torchvision import transforms as T | |
from torchvision.transforms import functional as F | |
import sys | |
sys.path.append('./') | |
from videollama2.conversation import conv_templates, SeparatorStyle | |
from videollama2.constants import NUM_FRAMES, DEFAULT_MMODAL_TOKEN, DEFAULT_MMODAL_START_TOKEN, DEFAULT_MMODAL_END_TOKEN, MMODAL_TOKEN_INDEX | |
from videollama2.mm_utils import get_model_name_from_path, tokenizer_MMODAL_token, KeywordsStoppingCriteria, process_videos, expand2square | |
from videollama2.model.builder import load_pretrained_model | |
# NOTE: Ignore TypedStorage warning, which refers to this link~(https://github.com/pytorch/pytorch/issues/97207#issuecomment-1494781560) | |
warnings.filterwarnings('ignore', category=UserWarning, message='TypedStorage is deprecated') | |
default_mm_token = DEFAULT_MMODAL_TOKEN["VIDEO"] | |
default_mm_start_token = DEFAULT_MMODAL_START_TOKEN["VIDEO"] | |
default_mm_end_token = DEFAULT_MMODAL_END_TOKEN["VIDEO"] | |
modal_token_index = MMODAL_TOKEN_INDEX["VIDEO"] | |
def split_list(lst, n): | |
"""Split a list into n (roughly) equal-sized chunks""" | |
chunk_size = math.ceil(len(lst) / n) # integer division | |
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] | |
def get_chunk(lst, n, k): | |
chunks = split_list(lst, n) | |
return chunks[k] | |
class MVBenchDataset(Dataset): | |
def __init__(self, data_list, processor, num_segments=8): | |
self.data_list = data_list | |
self.decord_method = { | |
'video': self.read_video, | |
'gif': self.read_gif, | |
'frame': self.read_frame, | |
} | |
self.processor = processor | |
self.num_segments = num_segments | |
def __str__(self): | |
len_list = {} | |
option_list = {} | |
for data in self.data_list: | |
if data['task_type'] not in len_list: | |
len_list[data['task_type']] = 0 | |
len_list[data['task_type']] += 1 | |
if data['task_type'] not in option_list: | |
option_list[data['task_type']] = 0 | |
option_list[data['task_type']] += len(data['data']['candidates']) | |
correct = 0 | |
total = 0 | |
res = f"There are {len(self.data_list)} videos as follow:\n" | |
for k, v in len_list.items(): | |
correct += len_list[k] | |
total += option_list[k] | |
res += f"{v} for {k} ({option_list[k]} options => {len_list[k]/option_list[k]*100:.2f}%)\n" | |
correct = correct + 1 / option_list[k] | |
res += f"Total random accuracy: {correct/total*100:.2f}%" | |
return res.rstrip() | |
def __len__(self): | |
return len(self.data_list) | |
def get_index(self, bound, fps, max_frame, first_idx=0): | |
if bound: | |
start, end = bound[0], bound[1] | |
else: | |
start, end = -100000, 100000 | |
start_idx = max(first_idx, round(start * fps)) | |
end_idx = min(round(end * fps), max_frame) | |
seg_size = float(end_idx - start_idx) / self.num_segments | |
frame_indices = np.array([ | |
int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) | |
for idx in range(self.num_segments) | |
]) | |
return frame_indices | |
def read_video(self, video_path, bound=None): | |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) | |
max_frame = len(vr) - 1 | |
fps = float(vr.get_avg_fps()) | |
images_group = list() | |
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) | |
for frame_index in frame_indices: | |
img = Image.fromarray(vr[frame_index].asnumpy()) | |
images_group.append(img) | |
# images_group = [expand2square(img, tuple(int(x*255) for x in self.processor.image_mean)) for img in images_group] | |
torch_imgs = self.processor(images_group, return_tensors='pt')['pixel_values'] | |
return torch_imgs | |
def read_gif(self, video_path, bound=None, fps=25): | |
gif = imageio.get_reader(video_path) | |
max_frame = len(gif) - 1 | |
images_group = list() | |
frame_indices = self.get_index(bound, fps, max_frame, first_idx=0) | |
for index, frame in enumerate(gif): | |
if index in frame_indices: | |
img = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) | |
img = Image.fromarray(img) | |
images_group.append(img) | |
# images_group = [expand2square(img, tuple(int(x*255) for x in self.processor.image_mean)) for img in images_group] | |
torch_imgs = self.processor(images_group, return_tensors='pt')['pixel_values'] | |
return torch_imgs | |
def read_frame(self, video_path, bound=None, fps=3): | |
max_frame = len(os.listdir(video_path)) | |
images_group = list() | |
frame_indices = self.get_index(bound, fps, max_frame, first_idx=1) # frame_idx starts from 1 | |
for frame_index in frame_indices: | |
img = Image.open(os.path.join(video_path, f"{frame_index:05d}.jpg")) | |
images_group.append(img) | |
# images_group = [expand2square(img, tuple(int(x*255) for x in self.processor.image_mean)) for img in images_group] | |
torch_imgs = self.processor.preprocess(images_group, return_tensors='pt')['pixel_values'] | |
return torch_imgs | |
def qa_template(self, data): | |
question = f"Question: {data['question']}\n" | |
question += "Options:\n" | |
answer = data['answer'] | |
answer_idx = -1 | |
for idx, c in enumerate(data['candidates']): | |
question += f"({chr(ord('A') + idx)}) {c}\n" | |
if c == answer: | |
answer_idx = idx | |
question = question.rstrip() | |
answer = f"({chr(ord('A') + answer_idx)}) {answer}" | |
return question, answer | |
def __getitem__(self, idx): | |
decord_method = self.decord_method[self.data_list[idx]['data_type']] | |
bound = None | |
if self.data_list[idx]['bound']: | |
bound = ( | |
self.data_list[idx]['data']['start'], | |
self.data_list[idx]['data']['end'], | |
) | |
video_path = os.path.join(self.data_list[idx]['prefix'], self.data_list[idx]['data']['video']) | |
torch_imgs = decord_method(video_path, bound) | |
question = self.data_list[idx]['data']['question'] | |
options = self.data_list[idx]['data']['candidates'] | |
answer = self.data_list[idx]['data']['answer'] | |
task_type = self.data_list[idx]['task_type'] | |
# question, answer = self.qa_template(self.data_list[idx]['data']) | |
answer_idx = -1 | |
letters = [] | |
options_string = '' | |
for option_idx, c in enumerate(options): | |
letters.append(f"{chr(ord('A') + option_idx)}") | |
options_string += f"({chr(ord('A') + option_idx)}) {c}\n" | |
if c == answer: | |
answer_idx = option_idx | |
option_question = f'Question: {question}\nOptions:\n{options_string}Answer with the option\'s letter from the given choices directly and only give the best option.' | |
return { | |
'video': torch_imgs, | |
'video_path': video_path, | |
'question': option_question, | |
'letters': ','.join(letters), | |
'answer_idx': answer_idx, | |
'task_type': task_type | |
} | |
tasks = { | |
"Action Sequence": ("action_sequence.json", "star/Charades_v1_480/", "video", True), # has start & end | |
"Action Prediction": ("action_prediction.json", "star/Charades_v1_480/", "video", True), # has start & end | |
"Action Antonym": ("action_antonym.json", "ssv2_video/", "video", False), | |
"Fine-grained Action": ("fine_grained_action.json", "Moments_in_Time_Raw/videos/", "video", False), | |
"Unexpected Action": ("unexpected_action.json", "FunQA_test/test/", "video", False), | |
"Object Existence": ("object_existence.json", "clevrer/video_validation/", "video", False), | |
"Object Interaction": ("object_interaction.json", "star/Charades_v1_480/", "video", True), # has start & end | |
"Object Shuffle": ("object_shuffle.json", "perception/videos/", "video", False), | |
"Moving Direction": ("moving_direction.json", "clevrer/video_validation/", "video", False), | |
"Action Localization": ("action_localization.json", "sta/sta_video/", "video", True), # has start & end | |
"Scene Transition": ("scene_transition.json", "scene_qa/video/", "video", False), | |
"Action Count": ("action_count.json", "perception/videos/", "video", False), | |
"Moving Count": ("moving_count.json", "clevrer/video_validation/", "video", False), | |
"Moving Attribute": ("moving_attribute.json", "clevrer/video_validation/", "video", False), | |
"State Change": ("state_change.json", "perception/videos/", "video", False), | |
"Fine-grained Pose": ("fine_grained_pose.json", "nturgbd/", "video", False), | |
"Character Order": ("character_order.json", "perception/videos/", "video", False), | |
"Egocentric Navigation": ("egocentric_navigation.json", "vlnqa/", "video", False), | |
"Episodic Reasoning": ("episodic_reasoning.json", "tvqa/frames_fps3_hq/", "frame", True), # has start & end, read frame | |
"Counterfactual Inference": ("counterfactual_inference.json", "clevrer/video_validation/", "video", False), | |
} | |
def build_mvbench_eval(args, processor, num_frames): | |
data_list = [] | |
for task_name, task in tasks.items(): | |
json_file = os.path.join(args.question_file, task[0]) | |
vis_folder = os.path.join(args.video_folder, task[1]) | |
with open(json_file, 'r') as f: | |
json_data = json.load(f) | |
for data in json_data: | |
data_list.append({ | |
'task_type': task_name, | |
'prefix': vis_folder, | |
'data_type': task[2], | |
'bound': task[3], | |
'data': data | |
}) | |
data_list = get_chunk(data_list, args.num_chunks, args.chunk_idx) | |
dataset = MVBenchDataset(data_list, processor, num_segments=num_frames) | |
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) | |
return dataloader | |
def mvbench_dump(ans_file, line, outputs): | |
for idx, output in enumerate(outputs): | |
vid = line['video_path'][idx] | |
task_type = line['task_type'][idx] | |
letters = line['letters'][idx].split(',') | |
answer_idx = line['answer_idx'][idx].item() | |
pred_answer = re.findall(f'[\(,\ ]*[{letters[0]}-{letters[-1]}][\),\ ]*', output) | |
if len(pred_answer) == 0: | |
pred_idx = (answer_idx + 1) % len(letters) | |
else: | |
pred_answer = pred_answer[0].strip() | |
if pred_answer.startswith('('): | |
pred_answer = pred_answer.strip('()') | |
pred_idx = letters.index(pred_answer) | |
ans_file.write(json.dumps({"vid": vid, "task_type": task_type, "pred": pred_idx, "gt": answer_idx}) + '\n') | |
class NextoeDataset(Dataset): | |
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] | |
def __init__(self, data_list, processor, num_segments=8): | |
self.data_list = data_list | |
self.processor = processor | |
self.num_segments = num_segments | |
def __len__(self): | |
return len(self.data_list) | |
def __getitem__(self, idx): | |
line = self.data_list[idx] | |
video_name = line['video'] | |
question = line['question'] | |
answer = line['answer'] | |
for fmt in self.video_formats: # Added this line | |
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}") | |
if os.path.exists(temp_path): | |
video_path = temp_path | |
break | |
decord_vr = VideoReader(uri=video_path, ctx=cpu(0)) | |
frames = decord_vr.get_batch(np.linspace(0, len(decord_vr) - 1, 8, dtype=int)).asnumpy() | |
video_tensor = self.processor.preprocess(frames, return_tensors='pt')['pixel_values'] # do not pad for video frames | |
wrapped_question = f'Question: {question}\nAnswer the question using a single word or a short phrase with multiple words.' | |
return { | |
'video': video_tensor, | |
'question': wrapped_question, | |
'answer': answer, | |
'qid': line['qid'] | |
} | |
def build_nextoe_eval(args, processor, num_frames): | |
questions = json.load(open(args.question_file, "r")) | |
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
dataset = NextoeDataset(questions, processor, num_segments=num_frames) | |
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) | |
return dataloader | |
def nextoe_dump(ans_file, line, outputs): | |
for idx, output in enumerate(outputs): | |
vid, qid = line['qid'][idx].split('_') | |
ans_file.write(json.dumps({"vid": vid, "qid": qid, "prediction": output}) + '\n') | |
class NextqaDataset(Dataset): | |
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] | |
def __init__(self, data_list, processor, num_segments=8): | |
self.data_list = data_list | |
self.processor = processor | |
self.num_segments = num_segments | |
def __len__(self): | |
return len(self.data_list) | |
def __getitem__(self, idx): | |
line = self.data_list[idx] | |
video_name = line['video'] | |
question = line['question'] | |
answer = line['answer'] | |
for fmt in self.video_formats: # Added this line | |
temp_path = os.path.join(args.video_folder, f"{video_name}{fmt}") | |
if os.path.exists(temp_path): | |
video_path = temp_path | |
break | |
decord_vr = VideoReader(uri=video_path, ctx=cpu(0)) | |
frames = decord_vr.get_batch(np.linspace(0, len(decord_vr) - 1, 8, dtype=int)).asnumpy() | |
video_tensor = self.processor.preprocess(frames, return_tensors='pt')['pixel_values'] # do not pad for video frames | |
assert line['num_option'] == 5 | |
a0 = line['a0'] | |
a1 = line['a1'] | |
a2 = line['a2'] | |
a3 = line['a3'] | |
a4 = line['a4'] | |
option_question = f'Question: {question}\nOptions:\n(A) {a0}\n(B) {a1}\n(C) {a2}\n(D) {a3}\n(E) {a4}\nAnswer with the option\'s letter from the given choices directly and only give the best option.' | |
return { | |
'video': video_tensor, | |
'question': option_question, | |
'answer': answer, | |
'qid': line['qid'] | |
} | |
def build_nextqa_eval(args, processor, num_frames): | |
questions = json.load(open(args.question_file, "r")) | |
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
dataset = NextqaDataset(questions, processor, num_segments=num_frames) | |
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) | |
return dataloader | |
def nextqa_dump(ans_file, line, outputs): | |
for idx, output in enumerate(outputs): | |
qid = line['qid'][idx] | |
answer = line['answer'][idx].item() | |
letters = ['A', 'B', 'C', 'D', 'E'] | |
pred_answer = re.findall('[\(,\ ]*[A-E][\),\ ]*', output) | |
if len(pred_answer) == 0: | |
pred_idx = 2 | |
else: | |
pred_answer = pred_answer[0].strip() | |
if pred_answer.startswith('('): | |
pred_answer = pred_answer.strip('()') | |
pred_idx = letters.index(pred_answer) | |
ans_file.write(json.dumps({"id": qid, "prediction": pred_idx, "answer": answer}) + '\n') | |
class EgoschemaDataset(Dataset): | |
video_formats = ['.mp4', '.avi', '.mov', '.mkv'] | |
def __init__(self, data_list, processor, num_segments=8): | |
self.data_list = data_list | |
self.processor = processor | |
self.num_segments = num_segments | |
def __len__(self): | |
return len(self.data_list) | |
def __getitem__(self, idx): | |
line = self.data_list[idx] | |
q_uid = line['q_uid'] | |
for fmt in self.video_formats: # Added this line | |
temp_path = os.path.join(args.video_folder, f"{q_uid}{fmt}") | |
if os.path.exists(temp_path): | |
video_path = temp_path | |
break | |
decord_vr = VideoReader(uri=video_path, ctx=cpu(0)) | |
frames = decord_vr.get_batch(np.linspace(0, len(decord_vr) - 1, self.num_segments, dtype=int)).asnumpy() | |
video_tensor = self.processor.preprocess(frames, return_tensors='pt')['pixel_values'] # do not pad for video frames | |
question = line['question'] | |
a0 = line['option 0'] | |
a1 = line['option 1'] | |
a2 = line['option 2'] | |
a3 = line['option 3'] | |
a4 = line['option 4'] | |
axs = [a0, a1, a2, a3, a4] | |
ops = ['(A)', '(B)', '(C)', '(D)', '(E)'] | |
option_question = f'Question: {question}\nOptions:\n(A) {a0}\n(B) {a1}\n(C) {a2}\n(D) {a3}\n(E) {a4}\n.Answer with the option\'s letter from the given choices directly and only give the best option.' | |
return { | |
'q_uid': q_uid, | |
'video': video_tensor, | |
'question': option_question, | |
} | |
def build_egoschema_eval(args, processor, num_frames): | |
questions = json.load(open(args.question_file, "r")) | |
questions = get_chunk(questions, args.num_chunks, args.chunk_idx) | |
dataset = EgoschemaDataset(questions, processor, num_segments=num_frames) | |
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) | |
return dataloader | |
def egoschema_dump(ans_file, line, outputs): | |
for idx, output in enumerate(outputs): | |
q_uid = line['q_uid'][idx] | |
letters = ['A', 'B', 'C', 'D', 'E'] | |
pred_answer = re.findall('[\(\ ]*[A-E][\)\ ]*', output) | |
if len(pred_answer) == 0: | |
pred_idx = 2 | |
else: | |
pred_answer = pred_answer[0].strip() | |
# if pred_answer.startswith('('): | |
pred_answer = pred_answer.strip('()') | |
pred_idx = letters.index(pred_answer) | |
ans_file.write(f'{q_uid}, {pred_idx}\n') | |
def get_model_output(model, video_tensor, tokenizer, questions, conv_mode="v1", device='cuda'): | |
input_ids = [] | |
modal_list = [] | |
for qs in questions: | |
if model.config.mm_use_im_start_end: | |
qs = default_mm_start_token + default_mm_token + default_mm_end_token + "\n" + qs | |
else: | |
qs = default_mm_token + "\n" + qs | |
conv = conv_templates[conv_mode].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
input_id = tokenizer_MMODAL_token(prompt, tokenizer, modal_token_index, return_tensors='pt') | |
input_ids.append(input_id) | |
modal_list.append("video") | |
# left pad sequence | |
input_ids = torch.nn.utils.rnn.pad_sequence( | |
[x.flip(dims=[0]) for x in input_ids], | |
batch_first=True, | |
padding_value=tokenizer.pad_token_id).flip(dims=[1]).to(device) | |
attention_mask=input_ids.ne(tokenizer.pad_token_id).to(device) | |
video_tensor = video_tensor.half().to(args.device) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
attention_mask=attention_mask, | |
images_or_videos=video_tensor, | |
modal_list=modal_list, | |
do_sample=False, | |
max_new_tokens=1024, | |
use_cache=True, | |
pad_token_id=tokenizer.eos_token_id) | |
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True) | |
return outputs | |
def run_inference(args): | |
""" | |
Run inference on ActivityNet QA DataSet using the Video-ChatGPT model. | |
Args: | |
args: Command-line arguments. | |
""" | |
# Initialize the model | |
model_name = get_model_name_from_path(args.model_path) | |
tokenizer, model, processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) | |
num_frames = model.config.num_frames if hasattr(model.config, "num_frames") else NUM_FRAMES | |
answer_file = os.path.expanduser(args.answer_file) | |
os.makedirs(os.path.dirname(answer_file), exist_ok=True) | |
ans_file = open(answer_file, "w") | |
output_list = [] # List to store the output results | |
if args.dataset == 'mvbench': | |
val_loader = build_mvbench_eval(args, processor, num_frames) | |
elif args.dataset == 'nextoe': | |
val_loader = build_nextoe_eval(args, processor, num_frames) | |
elif args.dataset == 'nextqa': | |
val_loader = build_nextqa_eval(args, processor, num_frames) | |
elif args.dataset == 'egoschema': | |
val_loader = build_egoschema_eval(args, processor, num_frames) | |
else: | |
raise NotImplementedError(f"Dataset {args.dataset} not implemented.") | |
# Iterate over each sample in the ground truth file | |
for i, line in enumerate(tqdm(val_loader)): | |
video_tensor = line['video'] | |
questions = line['question'] | |
outputs = get_model_output(model, video_tensor, tokenizer, questions, args.conv_mode, args.device) | |
if args.dataset == 'mvbench': | |
mvbench_dump(ans_file, line, outputs) | |
elif args.dataset == 'nextoe': | |
nextoe_dump(ans_file, line, outputs) | |
elif args.dataset == 'nextqa': | |
nextqa_dump(ans_file, line, outputs) | |
elif args.dataset == 'egoschema': | |
egoschema_dump(ans_file, line, outputs) | |
else: | |
raise NotImplementedError(f"Dataset {args.dataset} not implemented.") | |
ans_file.close() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser(description='Multiple-Choice Video QA Evaluation Script.') | |
parser.add_argument('--dataset', help='Dataset to evaluate on.', required=True) | |
parser.add_argument('--model-path', help='', required=True) | |
parser.add_argument('--model_base', help='', default=None, type=str, required=False) | |
parser.add_argument('--video-folder', help='Directory containing video files.', required=True) | |
parser.add_argument('--question-file', help='Path to the ground truth file containing question.', required=True) | |
parser.add_argument('--answer-file', help='Path to the ground truth file containing answers.', required=True) | |
parser.add_argument("--conv-mode", type=str, default="llava_v1") | |
parser.add_argument("--num-chunks", type=int, default=1) | |
parser.add_argument("--chunk-idx", type=int, default=0) | |
parser.add_argument("--device", type=str, required=False, default='cuda:0') | |
parser.add_argument("--model_max_length", type=int, required=False, default=2048) | |
parser.add_argument("--batch-size", type=int, default=1) | |
parser.add_argument("--num-workers", type=int, default=8) | |
args = parser.parse_args() | |
run_inference(args) | |