lybxin's picture
Upload folder using huggingface_hub
66b7c56 verified
raw
history blame contribute delete
No virus
6.41 kB
"""
Copyright (c) Meta Platforms, Inc. and affiliates.
All rights reserved.
This source code is licensed under the license found in the
LICENSE file in the root directory of this source tree.
"""
"""
original code from
https://github.com/GuyTevet/motion-diffusion-model/blob/main/diffusion/gaussian_diffusion.py
under an MIT license
https://github.com/GuyTevet/motion-diffusion-model/blob/main/LICENSE
"""
"""
Various utilities for neural networks.
"""
import math
import torch as th
import torch.nn as nn
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
class SiLU(nn.Module):
def forward(self, x):
return x * th.sigmoid(x)
class GroupNorm32(nn.GroupNorm):
def forward(self, x):
return super().forward(x.float()).type(x.dtype)
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def linear(*args, **kwargs):
"""
Create a linear module.
"""
return nn.Linear(*args, **kwargs)
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def update_ema(target_params, source_params, rate=0.99):
"""
Update target parameters to be closer to those of source parameters using
an exponential moving average.
:param target_params: the target parameter sequence.
:param source_params: the source parameter sequence.
:param rate: the EMA rate (closer to 1 means slower).
"""
for targ, src in zip(target_params, source_params):
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
def zero_module(module):
"""
Zero out the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().zero_()
return module
def scale_module(module, scale):
"""
Scale the parameters of a module and return it.
"""
for p in module.parameters():
p.detach().mul_(scale)
return module
def mean_flat(tensor):
"""
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def sum_flat(tensor):
"""
Take the sum over all non-batch dimensions.
"""
return tensor.sum(dim=list(range(1, len(tensor.shape))))
def normalization(channels):
"""
Make a standard normalization layer.
:param channels: number of input channels.
:return: an nn.Module for normalization.
"""
return GroupNorm32(32, channels)
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = th.exp(
-math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half
).to(device=timesteps.device)
args = timesteps[:, None].float() * freqs[None]
embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
if dim % 2:
embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def checkpoint(func, inputs, params, flag):
"""
Evaluate a function without caching intermediate activations, allowing for
reduced memory at the expense of extra compute in the backward pass.
:param func: the function to evaluate.
:param inputs: the argument sequence to pass to `func`.
:param params: a sequence of parameters `func` depends on but does not
explicitly take as arguments.
:param flag: if False, disable gradient checkpointing.
"""
if flag:
args = tuple(inputs) + tuple(params)
return CheckpointFunction.apply(func, len(inputs), *args)
else:
return func(*inputs)
class CheckpointFunction(th.autograd.Function):
@staticmethod
@th.cuda.amp.custom_fwd
def forward(ctx, run_function, length, *args):
ctx.run_function = run_function
ctx.input_length = length
ctx.save_for_backward(*args)
with th.no_grad():
output_tensors = ctx.run_function(*args[:length])
return output_tensors
@staticmethod
@th.cuda.amp.custom_bwd
def backward(ctx, *output_grads):
args = list(ctx.saved_tensors)
# Filter for inputs that require grad. If none, exit early.
input_indices = [i for (i, x) in enumerate(args) if x.requires_grad]
if not input_indices:
return (None, None) + tuple(None for _ in args)
with th.enable_grad():
for i in input_indices:
if i < ctx.input_length:
# Not sure why the OAI code does this little
# dance. It might not be necessary.
args[i] = args[i].detach().requires_grad_()
args[i] = args[i].view_as(args[i])
output_tensors = ctx.run_function(*args[: ctx.input_length])
if isinstance(output_tensors, th.Tensor):
output_tensors = [output_tensors]
# Filter for outputs that require grad. If none, exit early.
out_and_grads = [
(o, g) for (o, g) in zip(output_tensors, output_grads) if o.requires_grad
]
if not out_and_grads:
return (None, None) + tuple(None for _ in args)
# Compute gradients on the filtered tensors.
computed_grads = th.autograd.grad(
[o for (o, g) in out_and_grads],
[args[i] for i in input_indices],
[g for (o, g) in out_and_grads],
)
# Reassemble the complete gradient tuple.
input_grads = [None for _ in args]
for i, g in zip(input_indices, computed_grads):
input_grads[i] = g
return (None, None) + tuple(input_grads)