File size: 10,041 Bytes
bdd87a0
7306a42
f9a17d1
 
 
8aeda98
bdd87a0
f9a17d1
bdd87a0
f9a17d1
 
 
 
 
 
 
 
 
 
 
08e204f
f9a17d1
 
8aeda98
 
 
 
 
 
 
 
9324245
9ae565a
 
 
 
 
 
8aeda98
08e204f
f9a17d1
 
 
62a5f44
ed5e872
 
 
 
 
 
 
62a5f44
 
f9a17d1
08e204f
f9a17d1
 
 
 
9324245
08e204f
955d640
 
b9296d6
 
 
 
 
 
 
 
 
9324245
1a65c20
8aeda98
 
 
 
 
 
1a65c20
 
8aeda98
9ae565a
8aeda98
 
 
 
 
9ae565a
 
 
 
8aeda98
f9a17d1
8aeda98
 
 
62a5f44
 
 
8aeda98
47b44cb
8aeda98
62a5f44
955d640
62a5f44
08b68f4
62a5f44
 
 
 
 
 
 
9ae565a
 
62a5f44
9ae565a
 
62a5f44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08e204f
955d640
 
 
 
 
 
62a5f44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08b68f4
62a5f44
015e59f
08b68f4
015e59f
62a5f44
f9a17d1
9ae565a
8aeda98
f9a17d1
 
 
955d640
 
9324245
 
 
9ae565a
 
9324245
 
1a65c20
 
099bf82
955d640
9324245
08e204f
b9296d6
 
 
955d640
1a65c20
9ae565a
8aeda98
955d640
ed5e872
955d640
62a5f44
f9a17d1
955d640
62a5f44
9324245
 
 
 
 
 
 
955d640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae565a
955d640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08e204f
955d640
 
 
9324245
 
 
 
 
 
 
 
955d640
f9a17d1
bdd87a0
 
b9296d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import gradio as gr
import pandas as pd
import requests
import json
import tiktoken
import matplotlib.pyplot as plt

PRICES_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"

# Ensure TOKEN_COSTS is up to date when the module is loaded
try:
    response = requests.get(PRICES_URL)
    if response.status_code == 200:
        TOKEN_COSTS = response.json()
    else:
        raise Exception(f"Failed to fetch token costs, status code: {response.status_code}")
except Exception as e:
    print(f'Failed to update token costs with error: {e}. Using static costs.')
    with open("model_prices.json", "r") as f:
        TOKEN_COSTS = json.load(f)

TOKEN_COSTS = pd.DataFrame.from_dict(TOKEN_COSTS, orient='index').reset_index()
TOKEN_COSTS.columns = ['model'] + list(TOKEN_COSTS.columns[1:])
TOKEN_COSTS = TOKEN_COSTS.loc[
    (~TOKEN_COSTS["model"].str.contains("sample_spec"))
    & (~TOKEN_COSTS["input_cost_per_token"].isnull())
    & (~TOKEN_COSTS["output_cost_per_token"].isnull())
    & (TOKEN_COSTS["input_cost_per_token"] > 0)
    & (TOKEN_COSTS["output_cost_per_token"] > 0)
]
TOKEN_COSTS["supports_vision"] = TOKEN_COSTS["supports_vision"].fillna(False)

def clean_names(s):
    s = s.replace("_", " ").replace("ai", "AI")
    return s[0].upper() + s[1:]

TOKEN_COSTS["litellm_provider"] = TOKEN_COSTS["litellm_provider"].apply(clean_names)

cmap = plt.get_cmap('RdYlGn_r')  # Red-Yellow-Green colormap, reversed

def count_string_tokens(string: str, model: str) -> int:
    try:
        encoding = tiktoken.encoding_for_model(model.split('/')[-1])
    except:
        if len(model.split('/')) > 1:
            try:
                    encoding = tiktoken.encoding_for_model(model.split('/')[-2] + '/' + model.split('/')[-1])
            except KeyError:
                print(f"Model {model} not found. Using cl100k_base encoding.")
                encoding = tiktoken.get_encoding("cl100k_base")
        else:
            print(f"Model {model} not found. Using cl100k_base encoding.")
            encoding = tiktoken.get_encoding("cl100k_base")
    return len(encoding.encode(string))

def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float:
    model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
    prompt_cost = prompt_tokens * model_data['input_cost_per_token']
    completion_cost = completion_tokens * model_data['output_cost_per_token']
    return prompt_cost, completion_cost

def update_model_list(function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens):
    filtered_models = TOKEN_COSTS.loc[TOKEN_COSTS["max_input_tokens"] >= supports_max_input_tokens*1000]

    if litellm_provider != "Any":
        filtered_models = filtered_models[filtered_models['litellm_provider'] == litellm_provider]
    
    if supports_vision:
        filtered_models = filtered_models[filtered_models['supports_vision']]
    
    list_models = filtered_models['model'].tolist()
    return gr.Dropdown(choices=list_models, value=list_models[0] if list_models else "No model found for this combination!")

def compute_all(input_type, prompt_text, completion_text, base_prompt_tokens, base_completion_tokens, models):
    results = []
    for model in models:
        if input_type == "Text Input":
            prompt_tokens = count_string_tokens(prompt_text, model)
            completion_tokens = count_string_tokens(completion_text, model)
        else:  # Token Count Input
            prompt_tokens = int(base_prompt_tokens)
            completion_tokens = int(base_completion_tokens)

        model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
        prompt_cost, completion_cost = calculate_total_cost(prompt_tokens, completion_tokens, model)
        total_cost = prompt_cost + completion_cost
        
        results.append({
            "Model": model,
            "Provider": model_data['litellm_provider'],
            "Input Cost / M tokens": model_data['input_cost_per_token']*1e6,
            "Output Cost / M tokens": model_data['output_cost_per_token']*1e6,
            "Total Cost": round(total_cost, 6),
        })
    
    df = pd.DataFrame(results)

    if len(df) > 1:
        norm = plt.Normalize(df['Total Cost'].min(), df['Total Cost'].max())
        
        def apply_color(val):
            color = cmap(norm(val))
            rgba = tuple(int(x * 255) for x in color[:3]) + (0.3,)  # 0.5 for 50% opacity
            return f'background-color: rgba{rgba}'
        
    else:
        def apply_color(val):
            return "background-color: var(--input-background-fill)"
    
    
    # Apply colors and formatting
    def style_cell(val, column):
        style = ''
        if column == 'Total Cost':
            style += 'font-weight: bold; '
            style += apply_color(val)
        if column in ['Total Cost']:
            val = f'${val:.6f}'
        if column in ["Input Cost / M tokens", "Output Cost / M tokens"]:
            val = f'${val}'
        return f'<td style="{style}">{val}</td>'

    html_table = '<table class="styled-table">'
    html_table += '<thead><tr>'
    for col in df.columns:
        html_table += f'<th>{col}</th>'
    html_table += '</tr></thead><tbody>'
    for _, row in df.iterrows():
        html_table += '<tr>'
        for col in df.columns:
            html_table += style_cell(row[col], col)
        html_table += '</tr>'
    html_table += '</tbody></table>'
    
    return html_table

def toggle_input_visibility(choice):
    return (
        gr.Group(visible=(choice == "Text Input")),
        gr.Group(visible=(choice == "Token Count Input"))
    )

with gr.Blocks(css="""
    .styled-table {
        border-collapse: collapse;
        margin: 25px 0;
        font-family: Arial, sans-serif;
        width: 100%;
    }
    .styled-table th, .styled-table td {
        padding: 12px 15px;
        text-align: left;
        vertical-align: middle;
    }
    .styled-table tbody tr {
        border-bottom: 1px solid #dddddd;
    }
    .styled-table tbody tr:nth-of-type(even) {
        background-color: var(--input-background-fill);
    }
    .styled-table tbody tr:nth-of-type(odd) {
        background-color: var(--block-background-fill);
    }
""", theme=gr.themes.Soft(primary_hue=gr.themes.colors.yellow, secondary_hue=gr.themes.colors.orange)) as demo:
    gr.Markdown("""
    # Text-to-Dollars: Get the price of your LLM API calls!
    Based on prices data from [BerriAI's litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json).
    """)
    
    with gr.Row():
        with gr.Column():
            gr.Markdown("## Input type:")
            input_type = gr.Radio(["Text Input", "Token Count Input"], label="Input Type", value="Text Input")
            
            with gr.Group() as text_input_group:
                prompt_text = gr.Textbox(label="Prompt", value="Tell me a joke about AI.", lines=3)
                completion_text = gr.Textbox(label="Completion", value="Certainly: Why did the neural network go to therapy? It had too many deep issues!", lines=3)
            
            with gr.Group(visible=False) as token_input_group:
                prompt_tokens_input = gr.Number(label="Prompt Tokens", value=1500)
                completion_tokens_input = gr.Number(label="Completion Tokens", value=2000)

        with gr.Column():
            gr.Markdown("## Model choice:")
            with gr.Row():
                with gr.Column():
                    function_calling = gr.Checkbox(label="Supports Tool Calling", value=False)
                    supports_vision = gr.Checkbox(label="Supports Vision", value=False)
                with gr.Column():
                    supports_max_input_tokens = gr.Slider(label="Min Supported Input Length (thousands tokens)", minimum=2, maximum=256, step=2, value=2)
                    max_price = gr.Slider(label="Max Price per Input Token", minimum=0, maximum=0.001, step=0.00001, value=0.001, visible=False, interactive=False)
                litellm_provider = gr.Dropdown(label="Inference Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any")
        
            model = gr.Dropdown(label="Models (at least 1)", choices=TOKEN_COSTS['model'].tolist(), value=["anyscale/meta-llama/Meta-Llama-3-8B-Instruct", "gpt-4o", "claude-3-sonnet-20240229"], multiselect=True)
        
    gr.Markdown("## Resulting Costs 👇")

    with gr.Row():
        results_table = gr.HTML()

    input_type.change(
        toggle_input_visibility,
        inputs=[input_type],
        outputs=[text_input_group, token_input_group]
    )

    gr.on(
        triggers=[function_calling.change, litellm_provider.change, max_price.change, supports_vision.change, supports_max_input_tokens.change],
        fn=update_model_list,
        inputs=[function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens],
        outputs=model,
    )

    gr.on(
        triggers=[
            input_type.change,
            prompt_text.change,
            completion_text.change,
            prompt_tokens_input.change,
            completion_tokens_input.change,
            function_calling.change,
            litellm_provider.change,
            # max_price.change,
            supports_vision.change,
            supports_max_input_tokens.change,
            model.change
        ],
        fn=compute_all,
        inputs=[
            input_type,
            prompt_text,
            completion_text,
            prompt_tokens_input,
            completion_tokens_input,
            model
        ],
        outputs=results_table
    )

    # Load results on page load
    demo.load(
        fn=compute_all,
        inputs=[
            input_type,
            prompt_text,
            completion_text,
            prompt_tokens_input,
            completion_tokens_input,
            model
        ],
        outputs=results_table
    )

if __name__ == "__main__":
    demo.launch()