Spaces:
Running
Running
File size: 10,041 Bytes
bdd87a0 7306a42 f9a17d1 8aeda98 bdd87a0 f9a17d1 bdd87a0 f9a17d1 08e204f f9a17d1 8aeda98 9324245 9ae565a 8aeda98 08e204f f9a17d1 62a5f44 ed5e872 62a5f44 f9a17d1 08e204f f9a17d1 9324245 08e204f 955d640 b9296d6 9324245 1a65c20 8aeda98 1a65c20 8aeda98 9ae565a 8aeda98 9ae565a 8aeda98 f9a17d1 8aeda98 62a5f44 8aeda98 47b44cb 8aeda98 62a5f44 955d640 62a5f44 08b68f4 62a5f44 9ae565a 62a5f44 9ae565a 62a5f44 08e204f 955d640 62a5f44 08b68f4 62a5f44 015e59f 08b68f4 015e59f 62a5f44 f9a17d1 9ae565a 8aeda98 f9a17d1 955d640 9324245 9ae565a 9324245 1a65c20 099bf82 955d640 9324245 08e204f b9296d6 955d640 1a65c20 9ae565a 8aeda98 955d640 ed5e872 955d640 62a5f44 f9a17d1 955d640 62a5f44 9324245 955d640 9ae565a 955d640 08e204f 955d640 9324245 955d640 f9a17d1 bdd87a0 b9296d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import gradio as gr
import pandas as pd
import requests
import json
import tiktoken
import matplotlib.pyplot as plt
PRICES_URL = "https://raw.githubusercontent.com/BerriAI/litellm/main/model_prices_and_context_window.json"
# Ensure TOKEN_COSTS is up to date when the module is loaded
try:
response = requests.get(PRICES_URL)
if response.status_code == 200:
TOKEN_COSTS = response.json()
else:
raise Exception(f"Failed to fetch token costs, status code: {response.status_code}")
except Exception as e:
print(f'Failed to update token costs with error: {e}. Using static costs.')
with open("model_prices.json", "r") as f:
TOKEN_COSTS = json.load(f)
TOKEN_COSTS = pd.DataFrame.from_dict(TOKEN_COSTS, orient='index').reset_index()
TOKEN_COSTS.columns = ['model'] + list(TOKEN_COSTS.columns[1:])
TOKEN_COSTS = TOKEN_COSTS.loc[
(~TOKEN_COSTS["model"].str.contains("sample_spec"))
& (~TOKEN_COSTS["input_cost_per_token"].isnull())
& (~TOKEN_COSTS["output_cost_per_token"].isnull())
& (TOKEN_COSTS["input_cost_per_token"] > 0)
& (TOKEN_COSTS["output_cost_per_token"] > 0)
]
TOKEN_COSTS["supports_vision"] = TOKEN_COSTS["supports_vision"].fillna(False)
def clean_names(s):
s = s.replace("_", " ").replace("ai", "AI")
return s[0].upper() + s[1:]
TOKEN_COSTS["litellm_provider"] = TOKEN_COSTS["litellm_provider"].apply(clean_names)
cmap = plt.get_cmap('RdYlGn_r') # Red-Yellow-Green colormap, reversed
def count_string_tokens(string: str, model: str) -> int:
try:
encoding = tiktoken.encoding_for_model(model.split('/')[-1])
except:
if len(model.split('/')) > 1:
try:
encoding = tiktoken.encoding_for_model(model.split('/')[-2] + '/' + model.split('/')[-1])
except KeyError:
print(f"Model {model} not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
else:
print(f"Model {model} not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
return len(encoding.encode(string))
def calculate_total_cost(prompt_tokens: int, completion_tokens: int, model: str) -> float:
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
prompt_cost = prompt_tokens * model_data['input_cost_per_token']
completion_cost = completion_tokens * model_data['output_cost_per_token']
return prompt_cost, completion_cost
def update_model_list(function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens):
filtered_models = TOKEN_COSTS.loc[TOKEN_COSTS["max_input_tokens"] >= supports_max_input_tokens*1000]
if litellm_provider != "Any":
filtered_models = filtered_models[filtered_models['litellm_provider'] == litellm_provider]
if supports_vision:
filtered_models = filtered_models[filtered_models['supports_vision']]
list_models = filtered_models['model'].tolist()
return gr.Dropdown(choices=list_models, value=list_models[0] if list_models else "No model found for this combination!")
def compute_all(input_type, prompt_text, completion_text, base_prompt_tokens, base_completion_tokens, models):
results = []
for model in models:
if input_type == "Text Input":
prompt_tokens = count_string_tokens(prompt_text, model)
completion_tokens = count_string_tokens(completion_text, model)
else: # Token Count Input
prompt_tokens = int(base_prompt_tokens)
completion_tokens = int(base_completion_tokens)
model_data = TOKEN_COSTS[TOKEN_COSTS['model'] == model].iloc[0]
prompt_cost, completion_cost = calculate_total_cost(prompt_tokens, completion_tokens, model)
total_cost = prompt_cost + completion_cost
results.append({
"Model": model,
"Provider": model_data['litellm_provider'],
"Input Cost / M tokens": model_data['input_cost_per_token']*1e6,
"Output Cost / M tokens": model_data['output_cost_per_token']*1e6,
"Total Cost": round(total_cost, 6),
})
df = pd.DataFrame(results)
if len(df) > 1:
norm = plt.Normalize(df['Total Cost'].min(), df['Total Cost'].max())
def apply_color(val):
color = cmap(norm(val))
rgba = tuple(int(x * 255) for x in color[:3]) + (0.3,) # 0.5 for 50% opacity
return f'background-color: rgba{rgba}'
else:
def apply_color(val):
return "background-color: var(--input-background-fill)"
# Apply colors and formatting
def style_cell(val, column):
style = ''
if column == 'Total Cost':
style += 'font-weight: bold; '
style += apply_color(val)
if column in ['Total Cost']:
val = f'${val:.6f}'
if column in ["Input Cost / M tokens", "Output Cost / M tokens"]:
val = f'${val}'
return f'<td style="{style}">{val}</td>'
html_table = '<table class="styled-table">'
html_table += '<thead><tr>'
for col in df.columns:
html_table += f'<th>{col}</th>'
html_table += '</tr></thead><tbody>'
for _, row in df.iterrows():
html_table += '<tr>'
for col in df.columns:
html_table += style_cell(row[col], col)
html_table += '</tr>'
html_table += '</tbody></table>'
return html_table
def toggle_input_visibility(choice):
return (
gr.Group(visible=(choice == "Text Input")),
gr.Group(visible=(choice == "Token Count Input"))
)
with gr.Blocks(css="""
.styled-table {
border-collapse: collapse;
margin: 25px 0;
font-family: Arial, sans-serif;
width: 100%;
}
.styled-table th, .styled-table td {
padding: 12px 15px;
text-align: left;
vertical-align: middle;
}
.styled-table tbody tr {
border-bottom: 1px solid #dddddd;
}
.styled-table tbody tr:nth-of-type(even) {
background-color: var(--input-background-fill);
}
.styled-table tbody tr:nth-of-type(odd) {
background-color: var(--block-background-fill);
}
""", theme=gr.themes.Soft(primary_hue=gr.themes.colors.yellow, secondary_hue=gr.themes.colors.orange)) as demo:
gr.Markdown("""
# Text-to-Dollars: Get the price of your LLM API calls!
Based on prices data from [BerriAI's litellm](https://github.com/BerriAI/litellm/blob/main/model_prices_and_context_window.json).
""")
with gr.Row():
with gr.Column():
gr.Markdown("## Input type:")
input_type = gr.Radio(["Text Input", "Token Count Input"], label="Input Type", value="Text Input")
with gr.Group() as text_input_group:
prompt_text = gr.Textbox(label="Prompt", value="Tell me a joke about AI.", lines=3)
completion_text = gr.Textbox(label="Completion", value="Certainly: Why did the neural network go to therapy? It had too many deep issues!", lines=3)
with gr.Group(visible=False) as token_input_group:
prompt_tokens_input = gr.Number(label="Prompt Tokens", value=1500)
completion_tokens_input = gr.Number(label="Completion Tokens", value=2000)
with gr.Column():
gr.Markdown("## Model choice:")
with gr.Row():
with gr.Column():
function_calling = gr.Checkbox(label="Supports Tool Calling", value=False)
supports_vision = gr.Checkbox(label="Supports Vision", value=False)
with gr.Column():
supports_max_input_tokens = gr.Slider(label="Min Supported Input Length (thousands tokens)", minimum=2, maximum=256, step=2, value=2)
max_price = gr.Slider(label="Max Price per Input Token", minimum=0, maximum=0.001, step=0.00001, value=0.001, visible=False, interactive=False)
litellm_provider = gr.Dropdown(label="Inference Provider", choices=["Any"] + TOKEN_COSTS['litellm_provider'].unique().tolist(), value="Any")
model = gr.Dropdown(label="Models (at least 1)", choices=TOKEN_COSTS['model'].tolist(), value=["anyscale/meta-llama/Meta-Llama-3-8B-Instruct", "gpt-4o", "claude-3-sonnet-20240229"], multiselect=True)
gr.Markdown("## Resulting Costs 👇")
with gr.Row():
results_table = gr.HTML()
input_type.change(
toggle_input_visibility,
inputs=[input_type],
outputs=[text_input_group, token_input_group]
)
gr.on(
triggers=[function_calling.change, litellm_provider.change, max_price.change, supports_vision.change, supports_max_input_tokens.change],
fn=update_model_list,
inputs=[function_calling, litellm_provider, max_price, supports_vision, supports_max_input_tokens],
outputs=model,
)
gr.on(
triggers=[
input_type.change,
prompt_text.change,
completion_text.change,
prompt_tokens_input.change,
completion_tokens_input.change,
function_calling.change,
litellm_provider.change,
# max_price.change,
supports_vision.change,
supports_max_input_tokens.change,
model.change
],
fn=compute_all,
inputs=[
input_type,
prompt_text,
completion_text,
prompt_tokens_input,
completion_tokens_input,
model
],
outputs=results_table
)
# Load results on page load
demo.load(
fn=compute_all,
inputs=[
input_type,
prompt_text,
completion_text,
prompt_tokens_input,
completion_tokens_input,
model
],
outputs=results_table
)
if __name__ == "__main__":
demo.launch() |